925 resultados para TYROSINE KINASE-1
Resumo:
Receptor-mediated endocytosis is a constitutive high capacity pathway for the reabsorption of proteins from the glomerular filtrate by the renal proximal tubule. ClC-5 is a voltage-gated chloride channel found in the proximal tubule where it has been shown to be essential for protein uptake, based on evidence from patients with Dent's disease and studies in ClC-5 knockout mice. To further delineate the role of ClC-5 in albumin uptake, we performed a yeast two-hybrid screen with the C-terminal tail of ClC-5 to identify any interactions of the channel with proteins involved in endocytosis. We found that the C-terminal tail of ClC-5 bound the actin depolymerizing protein, cofilin, a result that was confirmed by GST-fusion pulldown assays. In cultured proximal tubule cells, cofilin was distributed in nuclear, cytoplasmic, and microsomal fractions and co-localized with ClC-5. Phosphorylation of cofilin by overexpressing LIM kinase 1 resulted in a stabilization of the actin cytoskeleton. Phosphorylation of cofilin in two proximal tubule cell models (porcine renal proximal tubule and opossum kidney) was also accompanied by a pronounced inhibition of albumin uptake. This study identifies a novel interaction between the C-terminal tail of ClC-5 and cofilin, an actin-associated protein that is crucial in the regulation of albumin uptake by the proximal tubule.
Resumo:
A common single nucleotide polymorphism (SNP) in the 5' untranslated region (5'UTR) of the epidermal growth factor (EGF) gene modulates the level of transcription of this gene and hence is associated with serum levels of EGF. This variant may be associated with melanoma risk, but conflicting findings have been reported. An Australian melanoma case-control sample was typed for the EGF+61A>G transversion (rs4444903). The sample comprised 753 melanoma cases from 738 families stratified by family history of melanoma and 2387 controls from 645 unselected twin families. Ancestry of the cases and controls was recorded, and the twins had undergone skin examination to assess total body nevus count, degree of freckling and pigmentation phenotype. SNP genotyping was carried out via primer extension followed by matrix-assisted laser desorption time of flight (MALDI-TOF) mass spectroscopy. The EGIF+61 SNP was not found to be significantly associated with melanoma status or with development of nevi or freckles. Among melanoma cases, however, G homozygotes had thicker tumors (p=0.05), in keeping with two previous studies. The EGF polymorphism does not appear to predispose to melanoma or nevus development, but its significant association with tumor thickness implies that it may be a useful marker of prognosis.
Resumo:
The EphA3 receptor tyrosine kinase preferentially binds ephrin-A5, a member of the corresponding subfamily of membrane-associated ligands. Their interaction regulates critical cell communication functions in normal development and may play a role in neoplasia. Here we describe a random mutagenesis approach, which we employed to study the molecular determinants of the EphA3/ephrin-A5 recognition. Selection and functional characterization of EphA3 point mutants with impaired ephrin-A5 binding from a yeast expression library defined three EphA3 surface areas that are essential for the EphA3/ephrin-A5 interaction. Two of these map to regions identified previously in the crystal structure of the homologous EphB2-ephrin-B2 complex as potential ligand/receptor interfaces. In addition, we identify a third EphA3/ephrin-A5 interface that falls outside the structurally characterized interaction domains. Functional analysis of EphA3 mutants reveals that all three Eph/ephrin contact areas are essential for the assembly of signaling-competent, oligomeric receptor-ligand complexes.
Resumo:
AIM: To investigate the biological features of A549 cells in which epidermal growth factor (EGF) receptors expression were suppressed by RNA interference (RNAi). METHODS: A549 cells were transfected using short small interfering RNAs (siRNAs) formulated with Lipofectamine 2000. The EGF receptor numbers were determined by Western blotting and flowcytometry. The antiproliferative effects of sequence specific double stranded RNA (dsRNA) were assessed using cell count, colony assay and scratch assay. The chemosensitivity of transfected cells to cisplatin was measured by MTT. RESULTS: Sequence specific dsRNA-EGFR down-regulated EGF receptor expression dramatically. Compared with the control group, dsRNA-EGFR reduced the cell number by 85.0 %, decreased the colonies by 63.3 %, inhibited the migration by 87.2 %, and increased the sensitivity of A549 to cisplatin by four-fold. CONCLUSION: Sequence specific dsRNA-EGFR were capable of suppressing EGF receptor expression, hence significantly inhibiting cellular proliferation and motility, and enhancing chemosensitivity of A549 cells to cisplatin. The successful application of dsRNA-EGFR for inhibition of proliferation in EGF receptor overexpressing cells can help extend the list of available therapeutic modalities in the treatment of non-small-cell lung carcinoma (NSCLC).
Resumo:
Purpose: To investigate the proportion of breast cancers arising inpatients with germ line BRCA1 and BRCA2 mutations expressing basal markers and developing predictive tests for identification of high-risk patients. Experimental Design: Histopathologic material from 182 tumors in BRCA1 mutation carriers, 63 BRCA2 carriers, and 109 controls, collected as part of the international Breast Cancer Linkage Consortium were immunohistochemically stained for CK14, CK5/6, CK17, epidermal growth factor receptor (EGFR), and osteonectin. Results: All five basal markers were commoner in BRCA1 tumors than in control tumors (CK14: 61% versus 12%; CK5/6: 58% versus 7%; CK17: 53% versus 10%; osteonectin: 43% versus 19%; EGFR: 67% versus 21%; P < 0.0001 in each case). In a multivariate analysis, CK14, CK5/6, and estrogen receptor (ER) remained significant predictors of BRCA1 carrier status. In contrast, the frequency of basal markers in BRCA2 tumors did not differ significant from controls. Conclusion: The use of cytokeratin staining in combination with ER and morphology provides a more accurate predictor of BRCA1 mutation status than previously available, that may be useful in selecting patients for BRCA1 mutation testing. The high percentage of BRCA1 cases positive for EGFR suggests that specific anti-tyrosine kinase therapy may be of potential benefit in these patients.
Three distinct molecular surfaces in ephrin-A5 are essential for a functional interaction with EphA3
Resumo:
Eph receptor tyrosine kinases (Ephs) function as molecular relays that interact with cell surface-bound ephrin ligands to direct the position of migrating cells. Structural studies revealed that, through two distinct contact surfaces on opposite sites of each protein, Eph and ephrin binding domains assemble into symmetric, circular heterotetramers. However, Eph signal initiation requires the assembly of higher order oligomers, suggesting additional points of contact. By screening a random library of EphA3 binding-compromised ephrin-A5 mutants, we have now determined ephrin-A5 residues that are essential for the assembly of high affinity EphA3 signaling complexes. In addition to the two interfaces predicted from the crystal structure of the homologous EphB2 center dot ephrin-B2 complex, we identified a cluster of 10 residues on the ephrin-A5 E alpha-helix, the E-F loop, the underlying H beta-strand, as well as the nearby B - C loop, which define a distinct third surface required for oligomerization and activation of EphA3 signaling. Together with a corresponding third surface region identified recently outside of the minimal ephrin binding domain of EphA3, our findings provide experimental evidence for the essential contribution of three distinct protein-interaction interfaces to assemble functional EphA3 signaling complexes.
Resumo:
The BCR-ABL tyrosine kinase inhibitor imatinib has greatly improved the outcome for patients with chronic myeloid leukaemia (CML). Unfortunately, mutations causing resistance to imatinib are leading to relapses in some patients. In addition to inhibiting the wild-type BCR-ABL, BMS-354825 inhibited 14 of 15 BCR-ABL mutants. BMS-354825 treatment of immunodeficient mice prevented the progression of the disease in mice treated with the most clinical common imatinib-resistant mutant Met351Thr. The safety and efficacy of BMS-354825 is presently being evaluated in a phase I/II clinical trial in CML patients with imatinib resistance. The frequency of clinical use of SMS-3548125 in CML patients will depend on its efficacy/safety profile in clinical trial.
Resumo:
To ensure signalling fidelity, kinases must act only on a defined subset of cellular targets. Appreciating the basis for this substrate specificity is essential for understanding the role of an individual protein kinase in a particular cellular process. The specificity in the cell is determined by a combination of peptide specificity of the kinase (the molecular recognition of the sequence surrounding the phosphorylation site), substrate recruitment and phosphatase activity. Peptide specificity plays a crucial role and depends on the complementarity between the kinase and the substrate and therefore on their three-dimensional structures. Methods for experimental identification of kinase substrates and characterization of specificity are expensive and laborious, therefore, computational approaches are being developed to reduce the amount of experimental work required in substrate identification. We discuss the structural basis of substrate specificity of protein kinases and review the experimental and computational methods used to obtain specificity information. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Metaplastic breast carcinomas are reported to harbour epidermal growth factor receptor (EGFR) overexpression in up to 80% of the cases, but EGFR gene amplification is the underlying genetic mechanism in around one-third of these. In this study, EGFR gene amplification as defined by chromogenic in situ hybridization and protein overexpression was examined in a cohort of 47 metaplastic breast carcinomas. Furthermore, the presence of activating EGFR mutations in exons 18, 19, 20, and 21 was investigated. Thirty-two cases showed EGFR overexpression and of these, 11 (34%) harboured EGFR gene amplification. In addition, EGFR amplification showed a statistically significant association with EGFR overexpression (p < 0.0094) and was restricted to carcinomas with homologous metaplasia. Ten cases, five with and five without EGFR amplification, were subjected to microarray-based CGH, which demonstrated that EGFR copy number gain may occur by amplification of a discrete genomic region or by gains of the short arm of chromosome 7 with a breakpoint near the EGFR gene locus, the minimal region of amplification mapping to EGFR, LANCL2, and SECOG. No activating EGFR mutations were identified, suggesting that this is unlikely to be a common alternative underlying genetic mechanism for EGFR expression in metaplastic breast carcinomas. Given that metaplastic breast carcinomas are resistant to conventional chemotherapy or hormone therapy regimens and that tumours with EGFR amplification are reported to be sensitive to EGFR tyrosine kinase inhibitors, these findings indicate that further studies are warranted to explore EGFR tyrosine kinase inhibitors as potential therapeutic agents for metaplastic breast carcinomas harbouring amplification of 7p11.2. Copyright (c) 2006 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd
Resumo:
There is an urgent need for high purity, single chain, fully functional Eph/ephrin membrane proteins. This report outlines the pTIg-BOS-Fc vector and purification approach resulting in rapid increased production of fully functional single chain extracellular proteins that were isolated with high purity and used in structure-function analysis and pre-clinical studies.
Resumo:
Background: Increased expression of Eph receptor tyrosine kinases and their ephrin ligands has been implicated in tumor progression in a number of malignancies. This report describes aberrant expression of these genes in ovarian cancer, the commonest cause of death amongst gynaecological malignancies. Methods: Eph and ephrin expression was determined using quantitative real time RT-PCR. Correlation of gene expression was measured using Spearman's rho statistic. Survival was analysed using log-rank analysis and ( was visualised by) Kaplan-Meier survival curves. Results: Greater than 10 fold over-expression of EphA1 and a more modest over-expression of EphA2 were observed in partially overlapping subsets of tumors. Over-expression of EphA1 strongly correlated ( r = 0.801; p < 0.01) with the high affinity ligand ephrin A1. A similar trend was observed between EphA2 and ephrin A1 ( r = 0.387; p = 0.06). A striking correlation of both ephrin A1 and ephrin A5 expression with poor survival ( r = - 0.470; p = 0.02 and r = - 0.562; p < 0.01) was observed. Intriguingly, there was no correlation between survival and other clinical parameters or Eph expression. Conclusion: These data imply that increased levels of ephrins A1 and A5 in the presence of high expression of Ephs A1 and A2 lead to a more aggressive tumor phenotype. The known functions of Eph/ephrin signalling in cell de-adhesion and movement may explain the observed correlation of ephrin expression with poor prognosis.
Resumo:
Molecules involved in axon guidance have recently also been shown to play a role in blood vessel guidance. To examine whether axon guidance molecules, such as the EphA4 receptor tyrosine kinase, might also play a role in development of the central nervous system (CNS) vasculature and repair following CNS injury, we examined wild-type and EphA4 null mutant (-/-) mice. EphA4-/- mice exhibited an abnormal CNS vascular structure in both the cerebral cortex and the spinal cord, with disorganized branching and a 30% smaller diameter. During development, EphA4 was expressed on endothelial cells. This pattern of expression was not maintained in the adult. After spinal cord injury in wild-type mice, expression of EphA4 was markedly up-regulated on activated astrocytes, many of which were tightly associated with blood vessels. In EphA4-/- spinal cord following injury, astrocytes were not as tightly associated with blood vessels as the wild-type astrocytes. In uninjured EphA4-/- mice, the blood-brain barrier (BBB) appeared normal, but it showed prolonged leakage following spinal cord injury. These results support a role for EphA4 in CNS vascular formation and guidance during development and an additional role in BBB repair.
Resumo:
Members of the Wnt family and their receptors, the Frizzleds, are key regulators of pivotal developmental processes including embryonic patterning, specification of cell fate, and determination of cell polarity. The versatility and complexity of Wnt signaling has been further highlighted by the emergence of a novel family of Wnt receptors, the Ryk family. In mammals and flies, Ryk is a key chemorepulsive axon guidance receptor responsible for the establishment of important axon tracts during nervous system development. Although the function of Ryk is currently best understood with respect to this role, its widespread expression, both in developing tissues and in the adult, suggests that Ryk may regulate many essential biological processes. This hypothesis is supported by the multiple developmental phenotypes apparent in Ryk loss-of-function mice. These mice display a variety of embryonic abnormalities, including disruption of skeletal, craniofacial and cardiac development. Here we review Ryk structure and function focusing on its activity as an axon guidance receptor. (c) 2006 Elsevier Ltd. All rights reserved.