962 resultados para TRAVELLING WAVE ION MOBILITY
Resumo:
Detailed small angle neutron scattering ( SANS) studies were carried out with the aqueous vesicular (unilamellar) suspension of dimeric ion-paired lipids (2a-2c) for spacer lengths corresponding to n-values of 2, 6 and 10 and monomeric ion-paired lipid (3) below and above the phase transition temperature of each amphiphile. The vesicular structure strongly depends on the spacer chain length. The mean vesicle size is smallest for the lipid with a short spacer, n = 3 and it increases with the increase in the spacer chain length. The bilayer thickness also decreases with the increase in the spacer chain length. The size polydispersity increases with the increase in the spacer chain length (n-value).
Resumo:
The variation of resistivity of the lithium fast-ion conductor Li3+y Ge1−yO4 (y = 0.25, 0.6, 0.72) has been studied with hydrostatic pressure up to 70 kbar and compared with that of Li16−2x Znx (GeO4)4(x = 1, 2). Both types showed pronounced resistivity maxima between 20–30 kbar and marked decrease thereafter. Measurements as a function of temperature between 120–300 K permitted the determination of activation energies and prefactors that also showed corresponding maxima. The activation volumes (ΔV) of the first type of compound varied between 4.34 to −4.90 cm3/mol at 300 K and decreased monotonically with increasing temperature. For the second type ΔV was much smaller, varied with pressure between 0.58 and −0.24 cm3/mol, and went through a maximum with increasing temperature. High-pressure studies were also conducted on aged samples, and the results are discussed in conjunction with results of impedance measurements and nuclear magnetic resonance (NMR) studies. The principal effect of pressure appears to be variations of the sum of interatomic potentials and hence barrier height, which also causes significant changes in entropy.
Resumo:
Aluminum oxide films have been prepared by ion assisted deposition using argon ions with energy in the range 300 to 1000 eV and current density in the range 50 to 220 μA/cm2. The influence of ion energy and current density on the optical and structural properties has been investigated. The refractive index, packing density, and extinction coefficient are found to be very sensitive to the ion beam parameters and substrate temperatures. The as-deposited films were found to be amorphous and could be transformed into crystalline phase on annealing. However, the crystalline phases were different in films prepared at ambient and elevated substrate temperatures.
Resumo:
Thin films of Ceria, Titania and Ziroonia have been prepared using Ion Assisted Deposition(IAD). The energy of ions was varied between 0 and 1 keV and current densities up to 220 μA/cm were used. It was found that the stress behaviour is dependent on ion species, i.e. Argon or Oxygen, ion energy and current density and substrate temperature apart from the material. While oeria files showed tensile stresses under the influence of argon ion bombardment at ambient temperature, they showed a sharp transition from tensile to compressive stress with increase in substrate temperature. When bombarded with oxygen ions they showed a transition from tensile to compressive stress with increase in energy. The titania films deposited with oxygen ions, on the other hand showed purely tensile stresses. Zirconia films deposited with oxygen ions, however, showed a transition from tensile to compressive stress.
Resumo:
As deposited amorphous and crystallized thin films of Ti 37.5% Si alloy deposited by pulsed laser ablation technique were irradiated with 100 keV Xe+ ion beam to an ion fluence of about 1016 ions-cm−2. Transmission electron microscopy revealed that the implanted Xe formed amorphous nanosized clusters in both cases. The Xe ion-irradiation favors nucleation of a fcc-Ti(Si) phase in amorphous films. However, in crystalline films, irradiation leads to dissolution of the Ti5Si3 intermetallic phase. In both cases, Xe irradiation leads to the evolution of similar microstructures. Our results point to the pivotal role of nucleation in the evolution of the microstructure under the condition of ion implantation.
Resumo:
We report the synthesis of thin films of B–C–N and C–N deposited by N+ ion-beam-assisted pulsed laser deposition (IBPLD) technique on glass substrates at different temperatures. We compare these films with the thin films of boron carbide synthesized by pulsed laser deposition without the assistance of ion-beam. Electron diffraction experiments in the transmission electron microscope shows that the vapor quenched regions of all films deposited at room temperature are amorphous. In addition, shown for the first time is the evidence of laser melting and subsequent rapid solidification of B4C melt in the form of micrometer- and submicrometer-size round particulates on the respective films. It is possible to amorphize B4C melt droplets of submicrometer sizes. Solidification morphologies of micrometer-size droplets show dispersion of nanocrystallites of B4C in amorphous matrix within the droplets. We were unable to synthesize cubic carbon nitride using the current technique. However, the formation of nanocrystalline turbostratic carbo- and boron carbo-nitrides were possible by IBPLD on substrate at elevated temperature and not at room temperature. Turbostraticity relaxes the lattice spacings locally in the nanometric hexagonal graphite in C–N film deposited at 600 °C leading to large broadening of diffraction rings.
Resumo:
The ferroelectric Pb(Zr0.53Ti0.47)O-3 (PZT) and SrBi2Ta2O9 (SBT) thin films were prepared by laser ablation technique. The dielectric analysis, capacitance-voltage, ferroelectric hysteresis and DC leakage current measurements were performed before and after 50 MeV Li3+ ion irradiation. In both thin films, the irradiation produced some amount of amorphisation, considerable degradation in the ferroelectric properties and change in DC conductivity. On irradiation of these thin films, the phase transition temperature [T-c] of PZT decreased considerably from 628 to 508 K, while SBT exhibited a broad and diffuse transition with its T-c decreased from 573 to 548 K. The capacitance-voltage curve at 100 kHz showed a double butterfly loop with a large decrease in the capacitance and switching voltage. There was decrease in the ferroelectric hysteresis loop, remanant polarisation and coercive field. After annealing at a temperature of 673 K for 10 min while PZT partially regained the ferroelectric properties, while SBT did not. The DC conductivity measurements showed a shift in the onset of non-linear conduction region in irradiated SBT. The degradation of ferroelectric properties of the irradiated thin films is attributed to the irradiation-induced partial amorphization and the pinning of the ferroelectric domains by trapped charges. The regaining of properties after annealing is attributed to the thermal annealing of the defects generated during the irradiation. (C) 2003 Elsevier Science B.V. All rights reserved.
Resumo:
Analysis of the serpentine folded-waveguide slow-wave structure was carried out using elliptical conformal transformation, for the dispersion and interaction impedance characteristics of the structure. The results obtained from the present analysis were compared with those from 3D electromagnetic simulation using MAFIA.
Resumo:
Ionic polymer-metal composites (IPMC), piezoelectric polymer composites and nematic elastomer composites are materials, which exhibit characteristics of both sensors and actuators. Large deformation and curvature are observed in these systems when electric potential is applied. Effects of geometric non-linearity due to the chargeinduced motion in these materials are poorly understood. In this paper, a coupled model for understanding the behavior of an ionic polymer beam undergoing large deformation and large curvature is presented. Maxwell's equations and charge transport equations are considered which couple the distribution of the ion concentration and the pressure gradient along length of a cantilever beam with interdigital electrodes. A nonlinear constitutive model is derived accounting for the visco-elasto-plastic behavior of these polymers and based on the hypothesis that the presence of electrical charge stretches/contracts bonds, which give rise to electrical field dependent softening/hardening. Polymer chain orientation in statistical sense plays a role on such softening or hardening. Elementary beam kinematics with large curvature is considered. A model for understanding the deformation due to electrostatic repulsion between asymmetrical charge distributions across the cross-sections is presented. Experimental evidence that Silver(Ag) nanoparticle coated IPMCs can be used for energy harvesting is reported. An IPMC strip is vibrated in different environments and the electric power against a resistive load is measured. The electrical power generated was observed to vary with the environment with maximum power being generated when the strip is in wet state. IPMC based energy harvesting systems have potential applications in tidal wave energy harvesting, residual environmental energy harvesting to power MEMS and NEMS devices.
Resumo:
A circular array of Piezoelectric Wafer Active Sensor (PWAS) has been employed to detect surface damages like corrosion using lamb waves. The array consists of a number of small PWASs of 10 mm diameter and 1 mm thickness. The advantage of a circular array is its compact arrangement and large area of coverage for monitoring with small area of physical access. Growth of corrosion is monitored in a laboratory-scale set-up using the PWAS array and the nature of reflected and transmitted Lamb wave patterns due to corrosion is investigated. The wavelet time-frequency maps of the sensor signals are employed and a damage index is plotted against the damage parameters and varying frequency of the actuation signal (a windowed sine signal). The variation of wavelet coefficient for different growth of corrosion is studied. Wavelet coefficient as function of time gives an insight into the effect of corrosion in time-frequency scale. We present here a method to eliminate the time scale effect which helps in identifying easily the signature of damage in the measured signals. The proposed method becomes useful in determining the approximate location of the corrosion with respect to the location of three neighboring sensors in the circular array. A cumulative damage index is computed for varying damage sizes and the results appear promising.
Resumo:
This article deals with the axial wave propagation properties of a coupled nanorod system with consideration of small scale effects. The nonlocal elasticity theory has been incorporated into classical rod/bar model to capture unique features of the coupled nanorods under the umbrella of continuum mechanics theory. Nonlocal rod model is developed for coupled nanorods. The strong effect of the nonlocal scale has been obtained which leads to substantially different wave behavior of nanorods from those of macroscopic rods. Explicit expressions are derived for wavenumber, cut-off frequency and escape frequency of nanorods. The analysis shows that the wave characteristics of nanorods are highly over estimated by the classical rod model, which ignores the effect of small-length scale. The studies also shows that the nonlocal scale parameter introduces certain band gap region in axial or longitudinal wave mode, where no wave propagation occurs. This is manifested in the spectrum cures as the region, where the wavenumber tends to infinite or wave speed tends to zero. The effect of the coupled spring stiffness is also capture in the present analysis. It has been also shown that the cut-off frequency increases as the stiffness of the coupled spring increases and also the coupled spring stiffness has no effect on escape frequency of the axial wave mode in the nanorod. This cut-off frequency is also independent of the nonlocal small scale parameter. The present study may bring in helpful insights while investigating multiple-nanorod-system-models for future nano-optomechanical systems applications. The results can also provide useful guidance for the study and design of the next generation of nanodevices that make use of the wave propagation properties of coupled single-walled carbon nanotubes or coupled nanorods. (C) 2011 Elsevier Ltd. All rights reserved.