944 resultados para TRANSITION-METAL COMPLEXES
Resumo:
SmOx modified Rh(l 0 0) surfaces have been in-situ prepared by depositing metallic Sin and subsequently oxidizing under controlled conditions, and the interaction between the lanthanide oxide and transition metal has been characterized by means of X-ray photoelectron spectroscopy (XPS) and high-resolution electron-energy-loss spectroscopy (HREELS) as well as thermal desorption spectroscopy (TDS). As evidenced, the adsorption of CO on the modified surfaces shows some different features to the original surface of Rh(l 00). The covering of SmOx blocks some sites on the surface and consequently suppresses adsorption of the typical CO species with an uptake at about 500 K, while a novel desorption peak centered at 260 K emerges in the CO TDS. Correspondingly, the XP spectrum exhibits a new C Is peak at 287.9 eV and 0 Is peak at 532.6 eV. The intensity of the low temperature peak varies with the coverage of SmOx, which shows an actual correlation to the perimeter sites of SmOx particles on the surface. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
KCrF3 has been systematically investigated by using the full-potential linearized augmented plane wave plus local orbital method within the generalized gradient approximation and the local spin density approximation plus the on-site Coulomb repulsion approach. The total energies for ferromagnetic and three different antiferromagnetic configurations are calculated in the high-temperature tetragonal and low-temperature monoclinic phases, respectively.
Resumo:
Novel channel structures based on [M(bpdo)(3)](2+) and p-sulfonatocalix[4]arene nanocapsules have been established; these are sustained exclusively by charge-assisted pi...pi interactions and sorption experiments show the porous materials have selective guest sorption properties.
Resumo:
Efficient white organic light-emitting diodes (WOLEDs) using europium complex as the red unit are presented. The WOLEDs were fabricated by using the structure of indium tin oxide (ITO)/N, N'-di(naphthalene-1-yl)-N, N'-diphenyl-benzidine (NPB)/4,4-N, N-dicarbazolebiphenyl (CBP) : bis(2,4-diphenylquinolyl-N, C-2) iridium (acetylacetonate) ((PPQ)(2)Ir(acac)) : Eu (III) tris(thenoyltrifluoroacetone) 3,4,7,8-tetramethyl-1,10-phenanthroline (Eu(TTA)(3)(Tmphen))/NPB/2-methyl-9,10-di(2-naphthyl)anthracene (MADN) : p-bis (p-N, N-di-phenyl-aminostyryl)benzene (DSA-Ph)/9-dimethyl-4,7-diphenyl-1,10-phenanthroline (BCP)/tris(8-hydroxyquinoline) aluminium (Alq3)/LiF/Al.
Resumo:
Enolic Schiff base zinc (II) complex 1 was synthesized. XRD revealed 1 was a novel crown-like macrocycle structure consisted of hexanuclear units of (LZnEt)(6) via the coordination chelation between the Zn atom and adjacent amine nitrogen atom. Further reaction of 1 with one equivalent 2-propanol at RT produced Zn-alkoxide 2 by in situ alcoholysis. Complex 2 was used as an initiator to polymerize rac-lactide in a controlled manner to give heterotactic enriched polylactide. Factors that influenced the polymerization such as the polymerization time and the temperature as well as the monomer concentration were discussed in detail in this paper.
Resumo:
In this paper, a simple chemical reduction route is discussed that results in small size, uniform dispersion of Pd nanoparticles supported on carbon black. HVO42-, the tridentate oxoanion with its O-O distance of 2.76 angstrom, closely matching with the Pd-Pd distance (2.75 angstrom), is expected to be an effective stabilizer for Pd according to the lattice size-matching binding model (Finke, R. G.; Ozkar, S. Coord. Chem. Rev. 2004, 248, 135). Because it has never been tested, HVO42- is exploited and found to be a very simple and effective stabilizer.
Resumo:
Cobalt porphyrin complex ((TPPCoX)-X-III) (TPP = 5, 10, 15, 20-Tetraphenylporphyrin; X = halide) in combination with ionic organic ammonium salt was used for the regio-specific copolymerization of propylene oxide and carbon dioxide. A turnover frequency of 188 h(-1) was achieved after 5 h, and the byproduct propylene carbonate was successfully controlled to below 1%, where the obtained poly(propylene carbonate) (PPC) showed number average molecular weight (M-n) of 48 kg/mol, head-to-tail content of 93%, and carbonate linkage of over 99%.
Resumo:
Strings of interconnected hollow carbon nanoparticles with porous shells were prepared by simple heat-treatments of a mixture of resorcinol-formaldehyde gel and transition-metal salts. The sample was characterized by scanning electron microscopy, transmission electron microscopy, X-ray diffraction and nitrogen adsorption. Results show that the sample consisted of relatively uniform hollow particles with sizes ranging from 70 to 80 nm forming a strings-of-pearls-like nanostructure. The material with porous shells possessed well-developed graphitic structure with an interlayer (d(002)) spacing of 0.3369 nm and the stack height of the graphite crystallites of 9 nm.
Resumo:
Living characteristics of facilely prepared Ziegler-Natta type catalyst system consisting of iron(III) 2-ethylhexanoate, triisobutylaluminum and diethyl phosphite have been found in the polymerization of 1,3-butadiene in hexane at 40 degrees C. The characteristics have been well demonstrated by: a first-order kinetics with respect to monomer conversion, a narrow molecular weight distribution (M-w/M-n = 1.48-1.52) of polybutadiene in the entire range of polymerization conversion and a good linearity between M-n and the yield of polymer. Feasible post-polymerization of 1,3-butadiene and block co-polymerization of 1,3-butadiene and isoprene further support the living natures of the catalyst bestowed with.
Resumo:
The structural, electronic, and mechanical properties of TaN were investigated by use of the density functional theory (DFT). Eight structures were considered, i.e.. hexagonal WC TaN, NiAs, wurtzite, and CoSn structures. cubic NaCl. zinc-blende and CsCl structures. The results indicate that TaN in TaN-type structure is the most stable at ambient conditions among the considered structures. Above 5 GPa, TaN in WC-type structure becomes energetically the most stable phase. They are also stable both thermodynamically and mechanically. TaN in WC-type has the largest shear Modulus 243 GPa and large bulk modulus 337 GPa among the considered structures. The Volume compressibility is slightly larger than diamond, but smaller than c-BN at pressures from 0 to 100 GPa. The compressibility along the c axis is smaller than the linear compressibility of both diamond and c-BN.
Resumo:
The structural, electronic, and mechanical properties of ReB and ReC have been studied by use of the density functional theory. For each compound, six structures are considered, i.e., hexagonal WC, NiAs, wurtzite, cubic NaCl, CsCl, and zinc-blende type structures. The results indicate that for ReB and ReC, WC type structure is energetically the most stable among the considered structures, followed by NiAs type structure. ReB-WC (i.e., ReB in WC type structure) and ReB-NiAs are both thermodynamically and mechanically stable. ReC-WC and ReC-NiAs are mechanically stable and becomes thermodynamically stable above 35 and 55 GPa, respectively. The estimated hardness from shear modulus is 34 GPa for ReB-WC, 28GPa for ReB-NiAs, 35GPa for ReC-WC and 37GPa for ReC-NiAs, indicating that they are potential candidates to be ultra-incompressible and hard materials.
Resumo:
Cobalt 2,4-dinitrophenolate (complex 1) based upon a N,N,O,O-tetradentate Schiff base ligand framework was prepared. X-ray diffraction analysis confirmed that complex 1 was triclinic species with a six-coordinated central cobalt octahedron in the solid. Asymmetric alternating copolymerization of carbon dioxide (CO2) with racemic propylene oxide (rac-PO) proceeded effectively by complex 1 in conjunction with (4-dimethylamino)pyridine (DMAP), yielding a perfectly alternating and bimodal molecular weight distribution PO/CO2 poly(propylene carbonate) (PPC) with a small amount of cyclic carbonate byproducts.