983 resultados para TEMPERATURE RANGE 0273-0400 K


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have performed dielectric and micro-Raman spectroscopy measurements in the 298 - 673 K temperature range in polycrystalline Pb0.50Sr0.50TiO3 thin films prepared by a soft chemical method. The phase transition have been investigated by dielectric measurements at various frequencies during the heating cycle. It was found that the temperature corresponding to the peak value of the dielectric constant is frequency-independent, indicating a non-relaxor ferroelectric behavior. However, the dielectric constant versus temperature curves associated with the ferroelectric to paraelectric phase transition showed a broad maximum peak at around 433 K. The observed behavior is explained in terms of a diffuse phase transition. The obtained Raman spectra indicate the presence of a local symmetry disorder, due to a higher strontium concentration in the host lattice. The monitoring of some modes, conducted in the Pb0.50Sr0.50TiO3 thin films, showed that the ferroelectric tetragonal phase undergoes a transition to the paraelectric cubic phase at around 423 K. However, the Raman activity did not disappear, as would be expected from a transition to the cubic paraelectric phase. The strong Raman spectrum observed for this cubic phase is indicative that a diffuse-type phase transition is taking place. This behavior is attributed to distortions of the perovskite structure, allowing the persistence of low-symmetry phase features in cubic phase high above the transition temperature. This result is in contrast to the forbidden first-order Raman spectrum, which would be expected from a cubic paraelectric phase, such as the one observed at high temperature in pure PbTiO3 perovskite.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conductivity behavior of the Bi12TiO20 single crystal was investigated by the electric modulus spectroscopy, which was carried out in the frequency range from 5 Hz to 13 MHz and at temperatures higher than 400 degrees C. The resistance curve exhibits a set of properties correlated to a negative temperature coefficient thermistor. In the temperature range investigated, the characteristic parameter (,8) of the thermistor is equal to 4834 degrees C. Temperature coefficients of the resistance (a) were derived being equal to -3.02 x 10(-2) degrees C-1 at 400 degrees C and equal to -9.86 x 10(-3) degrees C-1 at 700 degrees C. The nature of the electric relaxation phenomenon and magnitude dc conductivity are approached. (c) 2005 American Institute of Physics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effect of temperature on the oxalic acid catalyzed sono-hydrolysis of tetramethoxysilane (TMOS) was studied by means of a heat flux calorimetric method. The activation energy of the process was measured as (24.5 +/- 0.8) kJ/mol in the temperature range between 10 and 50 degreesC. The structural characteristics of the resulting sonogels, after long period of aging in saturated conditions, were studied by means of small angle X-ray scattering. The structure can be described as formed by similar to2.7 nm mean size mass fractal-like aggregates (clusters) of primary silica particles of similar to0.3 nm mean size, all imbibed in a liquid phase. The average mass fractal dimension of the clusters was found to be 2.58. The primary particle density was estimated as 2.23 g/cm(3), in good agreement with the value frequently quoted for fused silica. The volume fraction of the clusters, in the saturated sonogels was estimated as about 28%. The moment in which the meniscus of the liquid phase penetrates into the clusters under rapid evaporation process has been detected by an inflection in the first derivative of the curve of weight loss in a simple thermogravimetric test. (C) 2003 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Anelastic spectroscopy measurements (internal friction) are sensitive tools for the study of defects in solids, in particular the mobility of interstitial oxygen. Samples of Bi2Sr2CaCu2Oy were analyzed after being submitted to two thermal treatments in vacuum, one at 973 K and another at 673 K. Anelastic spectroscopy measurements were performed using a torsion pendulum operating at around 38 Hz and at a temperature range of 88 and 700 K with heating rate of 1 K/min and vacuum better than 10(-5) Torr. Complex relaxation structures reversible with new thermal treatments were observed. These relaxation structures were attributed to O-M structural phase transitions. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The photoinduced birefringence is analyzed in a guest-host azobenzene-containing polymer in the temperature range from 20 to 330 K. An anomalous behavior arises in the low-temperature range, suggesting strong influence from the free volume for the chromophores in the polymer. This influence is so strong that quenched samples have a photoinduced signal ca. 5 times greater than the annealed ones at room temperature. An extended free volume model is presented based on two assumptions about thermal fluctuations in the cavities and their size distribution. This model, which is an extension of the model by Mita et al., can explain the main features of the photoinduced birefringence as a function of time, temperature, and initial free volume state. To account for the influence of free volume on the photoorientation, the detailed reorientation model by Sekkat's was used. We show that Sekkat's model leads to an exponential behavior at small orientation regimes, which simplifies the mathematical treatment and allows the mean free volume to be obtained from the data fitting.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Amorphous and crystalline thin films of Mn-doped(0.5%-10%) GaAs and crystalline thin films of Zn1-xCoxO(x = 3%-20%) were investigated by means of magnetic susceptibility and electron spin resonance (ESR). For the Mn-doped GaAs samples, our results show the absence of ferromagnetic ordering for the amorphous films in the 300 > T > 2 K temperature range, in contrast to the ferromagnetism found in crystalline films for T-C < 110 K. A single ESR line with a temperature independent g-value (g similar to 2) is observed for the amorphous films, and the behavior of this ESR linewidth depends on the level of crystallinity of the film. For the Mn-doped GaAs crystalline films, only a ferromagnetic mode is observed for T < TC when the film is ferromagnetic. Turning now the Zn1-xCoxO films, ferromagnetic loops were observed at room temperature for these films. The magnetization data show an increasing of the saturation magnetization M. as a function of x reaching a maximum value for x approximate to 10%. ESR experiments at T = 300 K in the same films show a strong anisotropic ferromagnetic mode (FMR) for x = 0.10.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Zirconia-ceria powders with 12 mol % of CeO2 doped with 0.3 mol% of iron, copper, manganese and nickel oxides were synthesized by the conventional mixed oxide method. These systems were investigated with regard to the sinterability and electrical properties. Sintering was studied considering the shrinkage rate, densification, grain size, and phase evolution. Small amount of dopant such as iron reduces sintering temperature by over 150degreesC and more than 98% of tetragonal phase was retained at room temperature in samples sintered at 1450degreesC against 1600degreesC to stabilize the tetragonal phase on pure ZrO2-CeO2 system. The electrical conductivity was measured using impedance spectroscopy and the results were reported. The activation energy values calculated from the Arrhenius's plots in the temperature range of 350-700degreesC for intragrain conductivities are 1.04 eV.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In southeastern Brazil the leptodactylid frogs Leptodactylus fuscus and Physalaemus fuscomaculatus enter dormancy during the dry season. Oxygen uptake was measured in awake and dormant groups of both species in a temperature range at which these frogs are usually exposed throughout the year. Oxygen uptake was lower for dormant groups at high temperature, and a lack of response to temperature was reported between 20 - 25 C in the dormant group of both species. This temperature-intensitive range can be considered an adaptive feature to save fat reserves during dormancy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An experimental study of the temperature dependent dc electrical conductivity of doped poly (p-phenylene) in the range of 50-300 K has been presented. The results have been analyzed in the framework of some hopping models. We have observed that hopping models are not consistent with the temperature dependence of the conductivity data over the entire temperature range of measurement. We find that the logarithmic conductivity is proportional to T-beta, wherethe exponent beta is independent of temperature. It is shown that the most probable transport process in this material for the entire range of temperature is due to multiphonon-assisted hopping of the charge carriers that interact weakly with phonons. The parameters obtained from the fits of the experimental data to this model appear reasonable.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The alternating conductivity, sigma*(f) = sigma'(f) + i sigma ''(f), of in situ polymerized polyaniline thin films doped with hydrochloric acid, deposited on top of an interdigitated gold line array previously deposited on glass substrates, were measured in the frequency (f) range between 0.1 Hz to 10 MHz and in the temperature range from 100 to 430 K. The results for sigma'(f) are typical of a disordered solid material: for frequencies lower than a certain hopping frequency gamma(hop), log[sigma'(f)] is frequency-independent rising almost linearly for in logf > gamma(hop). A master curve was thus obtained by plotting the real component of the conductivity using normalized scales sigma'(f)/sigma(dc) and f/gamma(hop) which is indicative of a single process operating in the whole frequency range. An expression encompassing the conduction through a disordered structure taken from previous random free energy barrier model for hopping carriers, as well a dielectric function to represent the capacitive behavior of the PAni was employed to fit the experimental results. The dielectric constant and activation energy for hopping carriers were obtained as function of the polymer doping level. (c) 2007 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Temperature and frequency dependence of the F-19 nuclear spin relaxation of the fluoroindate glass, 40InF(3)-20ZnF(2)- 20SrF(2)-2GaF(3)-2NaF-16BaF(2) and the fluorozirconate glass, 50ZrF(4)-20BaF(2)-21LiF-5LaF(3)-4AlF(3); are reported. Measurements were undertaken on pure and Gd3+ doped samples, in the temperature range of 185-1000 K, covering the region below and above the glass transition temperature, T-g. The temperature and frequency dependence of the spin-lattice relaxation rate, T-1(-1), measured in the glassy state at temperature <300 K, is less than the observed dependence at higher temperatures. At temperatures >T-g, the fluorine mobility increases, leading to a more efficient spins lattice relaxation process. Activation energies, for F- motion, are 0.8 eV for the fluoroindate glass and 1 eV for the fluorozirconate glass. The addition of Gd3+ paramagnetic impurities;at 0.1-wt%, does not alter the temperature and frequency dependence of T-1(-1), but increases its magnitude more than one order of magnitude. At temperatures <400 K, the spin-spin relaxation time, T-2(-1), measured for all samples, is determined by the rigid-lattice nuclear dipole-dipole coupling, and it is temperature independent within the accuracy of the measurements. Results obtained for the pure glass, at temperatures >400 K, show that T-2(-1) decreases monotonically as the temperature increases. This decrease is explained as a consequence of the motional narrowing effect caused by the onset of the diffusive motion of the F- ions, with an activation energy around 0.8 eV. For the doped samples, the hyperfine interaction with the paramagnetic impurities is most effective in the relaxation of the nuclear spin, causing an increase in the T(2)(-1)s observed at temperatures >600 K. (C) 1999 Elsevier B.V. B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bi1.5ZnSb1.5O7 dielectric ceramic with pyrochlore structure was investigated by impedance spectroscopy from 400 to 750 degreesC. Pyrochlore was synthesized by the polymeric precursor method, a chemical synthesis route derived from Pechini's method. The grain or bulk resistance exhibits a sensor temperature characteristic, being a thermistor with a negative temperature coefficient (NTC). Only a single region was identified on the resistance curve investigated. The NTC thermistor characteristic parameter (beta) is equal to 7140 degreesC, in the temperature range investigated. The temperature coefficient of the resistance (alpha) was derived, being equal to -4.46x10(-2) degreesC(-1) at 400 degreesC. The conduction mechanism and relaxation are discussed. (C) 2003 American Institute of Physics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The temperature dependence has been investigated for the photoinduced birefringence in Langmuir-Blodgett (LB) films from the azocopolymer 4-[N- ethyl -N-(2-hydroxyethyl)] amino-2'-chloro-4'-nitroazobenzene (MMA-DR13) mixed with cadmium stearate. The buildup and relaxation of the birefringence in the range from 20 to 296 K were fitted with a Kohlrausch-Williams-Watts (KWW) function, with a beta-value of 0.78-0.98 for the build-up and 0.18-0.27 for the decay. This is consistent with a distribution of time constants for the kinetics of the birefringence processes. The maximum birefringence increased with increasing temperature up to 120 K because the free volume fluctuation also increased with temperature. Above 120 K, the birefringence decreased with temperature as thermal diffusion dominates. In the latter range of temperature, an Arrhenius behavior is inferred for both build-up and decay of birefringence. In each case two activation energies were obtained: 0.8 and 5 kJ/mol for the build-up and 10 and 30 kJ/mol for the decay. The energies for the build-up are much lower than those associated with motion of the polymer chain, which means that the dynamics is governed by the orientation of the chromophores. For the decay, local motion of lateral groups of the polymer chains becomes important as the activation energies are within the range of gamma-relaxation energies. (C) 2003 Elsevier B.V. B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Heat capacities of binary aqueous solutions of different concentrations of sucrose, glucose, fructose, citric acid, malic acid, and inorganic salts were measured with a differential scanning calorimeter in the temperature range from 5degreesC to 65degreesC. Heat capacity increased with increasing water content and increasing temperature. At low concentrations, heat capacity approached that of pure water, with a less pronounced effect of temperature, and similar abnormal behavior of pure water with a minimum around 30degreesC-40degreesC. Literature data, when available agreed relatively well with experimental values. A correction factor, based on the assumption of chemical equilibrium between liquid and gas phase in the Differential Scanning Calorimeter, was proposed to correct for the water evaporation due to temperature rise. Experimental data were fitted to predictive models. Excess molar heat capacity was calculated using the Redlich-Kister equation to represent the deviation from the additive ideal model.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thermal decomposition kinetics of solid rocket propellants based on hydroxyl-terminated polybutadiene-HTPB binder was studied by applying the Arrhenius and Flynn-Wall-Ozawa's methods. The thermal decomposition data of the propellant samples were analyzed by thermogravimetric analysis (TG/DTG) at different heating rates in the temperature range of 300-1200 K. TG curves showed that the thermal degradation occurred in three main stages regardless of the plasticizer (DOA) raw material, the partial HTPB/IPDI binder and the total ammonium perchlorate decompositions. The kinetic parameters E-a (activation energy) and A (pre-exponential factor) and the compensation parameter (S-p) were determined. The apparent activation energies obtained from different methods showed a very good agreement.