904 resultados para Sweep algorithms


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Template matching is a technique widely used for finding patterns in digital images. A good template matching should be able to detect template instances that have undergone geometric transformations. In this paper, we proposed a grayscale template matching algorithm named Ciratefi, invariant to rotation, scale, translation, brightness and contrast and its extension to color images. We introduce CSSIM (color structural similarity) for comparing the similarity of two color image patches and use it in our algorithm. We also describe a scheme to determine automatically the appropriate parameters of our algorithm and use pyramidal structure to improve the scale invariance. We conducted several experiments to compare grayscale and color Ciratefis with SIFT, C-color-SIFT and EasyMatch algorithms in many different situations. The results attest that grayscale and color Ciratefis are more accurate than the compared algorithms and that color-Ciratefi outperforms grayscale Ciratefi most of the time. However, Ciratefi is slower than the other algorithms.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present a novel array RLS algorithm with forgetting factor that circumvents the problem of fading regularization, inherent to the standard exponentially-weighted RLS, by allowing for time-varying regularization matrices with generic structure. Simulations in finite precision show the algorithm`s superiority as compared to alternative algorithms in the context of adaptive beamforming.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper, we propose an approach to the transient and steady-state analysis of the affine combination of one fast and one slow adaptive filters. The theoretical models are based on expressions for the excess mean-square error (EMSE) and cross-EMSE of the component filters, which allows their application to different combinations of algorithms, such as least mean-squares (LMS), normalized LMS (NLMS), and constant modulus algorithm (CMA), considering white or colored inputs and stationary or nonstationary environments. Since the desired universal behavior of the combination depends on the correct estimation of the mixing parameter at every instant, its adaptation is also taken into account in the transient analysis. Furthermore, we propose normalized algorithms for the adaptation of the mixing parameter that exhibit good performance. Good agreement between analysis and simulation results is always observed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The classical approach for acoustic imaging consists of beamforming, and produces the source distribution of interest convolved with the array point spread function. This convolution smears the image of interest, significantly reducing its effective resolution. Deconvolution methods have been proposed to enhance acoustic images and have produced significant improvements. Other proposals involve covariance fitting techniques, which avoid deconvolution altogether. However, in their traditional presentation, these enhanced reconstruction methods have very high computational costs, mostly because they have no means of efficiently transforming back and forth between a hypothetical image and the measured data. In this paper, we propose the Kronecker Array Transform ( KAT), a fast separable transform for array imaging applications. Under the assumption of a separable array, it enables the acceleration of imaging techniques by several orders of magnitude with respect to the fastest previously available methods, and enables the use of state-of-the-art regularized least-squares solvers. Using the KAT, one can reconstruct images with higher resolutions than was previously possible and use more accurate reconstruction techniques, opening new and exciting possibilities for acoustic imaging.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In Part I [""Fast Transforms for Acoustic Imaging-Part I: Theory,"" IEEE TRANSACTIONS ON IMAGE PROCESSING], we introduced the Kronecker array transform (KAT), a fast transform for imaging with separable arrays. Given a source distribution, the KAT produces the spectral matrix which would be measured by a separable sensor array. In Part II, we establish connections between the KAT, beamforming and 2-D convolutions, and show how these results can be used to accelerate classical and state of the art array imaging algorithms. We also propose using the KAT to accelerate general purpose regularized least-squares solvers. Using this approach, we avoid ill-conditioned deconvolution steps and obtain more accurate reconstructions than previously possible, while maintaining low computational costs. We also show how the KAT performs when imaging near-field source distributions, and illustrate the trade-off between accuracy and computational complexity. Finally, we show that separable designs can deliver accuracy competitive with multi-arm logarithmic spiral geometries, while having the computational advantages of the KAT.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

As is well known, Hessian-based adaptive filters (such as the recursive-least squares algorithm (RLS) for supervised adaptive filtering, or the Shalvi-Weinstein algorithm (SWA) for blind equalization) converge much faster than gradient-based algorithms [such as the least-mean-squares algorithm (LMS) or the constant-modulus algorithm (CMA)]. However, when the problem is tracking a time-variant filter, the issue is not so clear-cut: there are environments for which each family presents better performance. Given this, we propose the use of a convex combination of algorithms of different families to obtain an algorithm with superior tracking capability. We show the potential of this combination and provide a unified theoretical model for the steady-state excess mean-square error for convex combinations of gradient- and Hessian-based algorithms, assuming a random-walk model for the parameter variations. The proposed model is valid for algorithms of the same or different families, and for supervised (LMS and RLS) or blind (CMA and SWA) algorithms.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Starting from the Durbin algorithm in polynomial space with an inner product defined by the signal autocorrelation matrix, an isometric transformation is defined that maps this vector space into another one where the Levinson algorithm is performed. Alternatively, for iterative algorithms such as discrete all-pole (DAP), an efficient implementation of a Gohberg-Semencul (GS) relation is developed for the inversion of the autocorrelation matrix which considers its centrosymmetry. In the solution of the autocorrelation equations, the Levinson algorithm is found to be less complex operationally than the procedures based on GS inversion for up to a minimum of five iterations at various linear prediction (LP) orders.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Intravascular ultrasound (IVUS) image segmentation can provide more detailed vessel and plaque information, resulting in better diagnostics, evaluation and therapy planning. A novel automatic segmentation proposal is described herein; the method relies on a binary morphological object reconstruction to segment the coronary wall in IVUS images. First, a preprocessing followed by a feature extraction block are performed, allowing for the desired information to be extracted. Afterward, binary versions of the desired objects are reconstructed, and their contours are extracted to segment the image. The effectiveness is demonstrated by segmenting 1300 images, in which the outcomes had a strong correlation to their corresponding gold standard. Moreover, the results were also corroborated statistically by having as high as 92.72% and 91.9% of true positive area fraction for the lumen and media adventitia border, respectively. In addition, this approach can be adapted easily and applied to other related modalities, such as intravascular optical coherence tomography and intravascular magnetic resonance imaging. (E-mail: matheuscardosomg@hotmail.com) (C) 2011 World Federation for Ultrasound in Medicine & Biology.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Among several process variability sources, valve friction and inadequate controller tuning are supposed to be two of the most prevalent. Friction quantification methods can be applied to the development of model-based compensators or to diagnose valves that need repair, whereas accurate process models can be used in controller retuning. This paper extends existing methods that jointly estimate the friction and process parameters, so that a nonlinear structure is adopted to represent the process model. The developed estimation algorithm is tested with three different data sources: a simulated first order plus dead time process, a hybrid setup (composed of a real valve and a simulated pH neutralization process) and from three industrial datasets corresponding to real control loops. The results demonstrate that the friction is accurately quantified, as well as ""good"" process models are estimated in several situations. Furthermore, when a nonlinear process model is considered, the proposed extension presents significant advantages: (i) greater accuracy for friction quantification and (ii) reasonable estimates of the nonlinear steady-state characteristics of the process. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This work introduces the problem of the best choice among M combinations of the shortest paths for dynamic provisioning of lightpaths in all-optical networks. To solve this problem in an optimized way (shortest path and load balance), a new fixed routing algorithm, named Best among the Shortest Routes (BSR), is proposed. The BSR`s performance is compared in terms of blocking probability and network utilization with Dijkstra`s shortest path algorithm and others algorithms proposed in the literature. The evaluated scenarios include several representative topologies for all-optical networking and different wavelength conversion architectures. For all studied scenarios, BSR achieved superior performance. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This work studies the turbo decoding of Reed-Solomon codes in QAM modulation schemes for additive white Gaussian noise channels (AWGN) by using a geometric approach. Considering the relations between the Galois field elements of the Reed-Solomon code and the symbols combined with their geometric dispositions in the QAM constellation, a turbo decoding algorithm, based on the work of Chase and Pyndiah, is developed. Simulation results show that the performance achieved is similar to the one obtained with the pragmatic approach with binary decomposition and analysis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We consider in this paper the optimal stationary dynamic linear filtering problem for continuous-time linear systems subject to Markovian jumps in the parameters (LSMJP) and additive noise (Wiener process). It is assumed that only an output of the system is available and therefore the values of the jump parameter are not accessible. It is a well known fact that in this setting the optimal nonlinear filter is infinite dimensional, which makes the linear filtering a natural numerically, treatable choice. The goal is to design a dynamic linear filter such that the closed loop system is mean square stable and minimizes the stationary expected value of the mean square estimation error. It is shown that an explicit analytical solution to this optimal filtering problem is obtained from the stationary solution associated to a certain Riccati equation. It is also shown that the problem can be formulated using a linear matrix inequalities (LMI) approach, which can be extended to consider convex polytopic uncertainties on the parameters of the possible modes of operation of the system and on the transition rate matrix of the Markov process. As far as the authors are aware of this is the first time that this stationary filtering problem (exact and robust versions) for LSMJP with no knowledge of the Markov jump parameters is considered in the literature. Finally, we illustrate the results with an example.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this work, a wide analysis of local search multiuser detection (LS-MUD) for direct sequence/code division multiple access (DS/CDMA) systems under multipath channels is carried out considering the performance-complexity trade-off. It is verified the robustness of the LS-MUD to variations in loading, E(b)/N(0), near-far effect, number of fingers of the Rake receiver and errors in the channel coefficients estimates. A compared analysis of the bit error rate (BER) and complexity trade-off is accomplished among LS, genetic algorithm (GA) and particle swarm optimization (PSO). Based on the deterministic behavior of the LS algorithm, it is also proposed simplifications over the cost function calculation, obtaining more efficient algorithms (simplified and combined LS-MUD versions) and creating new perspectives for the MUD implementation. The computational complexity is expressed in terms of the number of operations in order to converge. Our conclusion pointed out that the simplified LS (s-LS) method is always more efficient, independent of the system conditions, achieving a better performance with a lower complexity than the others heuristics detectors. Associated to this, the deterministic strategy and absence of input parameters made the s-LS algorithm the most appropriate for the MUD problem. (C) 2008 Elsevier GmbH. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The most popular algorithms for blind equalization are the constant-modulus algorithm (CMA) and the Shalvi-Weinstein algorithm (SWA). It is well-known that SWA presents a higher convergence rate than CMA. at the expense of higher computational complexity. If the forgetting factor is not sufficiently close to one, if the initialization is distant from the optimal solution, or if the signal-to-noise ratio is low, SWA can converge to undesirable local minima or even diverge. In this paper, we show that divergence can be caused by an inconsistency in the nonlinear estimate of the transmitted signal. or (when the algorithm is implemented in finite precision) by the loss of positiveness of the estimate of the autocorrelation matrix, or by a combination of both. In order to avoid the first cause of divergence, we propose a dual-mode SWA. In the first mode of operation. the new algorithm works as SWA; in the second mode, it rejects inconsistent estimates of the transmitted signal. Assuming the persistence of excitation condition, we present a deterministic stability analysis of the new algorithm. To avoid the second cause of divergence, we propose a dual-mode lattice SWA, which is stable even in finite-precision arithmetic, and has a computational complexity that increases linearly with the number of adjustable equalizer coefficients. The good performance of the proposed algorithms is confirmed through numerical simulations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This work aims at proposing the use of the evolutionary computation methodology in order to jointly solve the multiuser channel estimation (MuChE) and detection problems at its maximum-likelihood, both related to the direct sequence code division multiple access (DS/CDMA). The effectiveness of the proposed heuristic approach is proven by comparing performance and complexity merit figures with that obtained by traditional methods found in literature. Simulation results considering genetic algorithm (GA) applied to multipath, DS/CDMA and MuChE and multi-user detection (MuD) show that the proposed genetic algorithm multi-user channel estimation (GAMuChE) yields a normalized mean square error estimation (nMSE) inferior to 11%, under slowly varying multipath fading channels, large range of Doppler frequencies and medium system load, it exhibits lower complexity when compared to both maximum likelihood multi-user channel estimation (MLMuChE) and gradient descent method (GrdDsc). A near-optimum multi-user detector (MuD) based on the genetic algorithm (GAMuD), also proposed in this work, provides a significant reduction in the computational complexity when compared to the optimum multi-user detector (OMuD). In addition, the complexity of the GAMuChE and GAMuD algorithms were (jointly) analyzed in terms of number of operations necessary to reach the convergence, and compared to other jointly MuChE and MuD strategies. The joint GAMuChE-GAMuD scheme can be regarded as a promising alternative for implementing third-generation (3G) and fourth-generation (4G) wireless systems in the near future. Copyright (C) 2010 John Wiley & Sons, Ltd.