895 resultados para Surfactant in electrochemistry


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Introduction : Le syndrome d’aspiration méconiale (SAM) est une pathologie respiratoire du nouveau-né qui, dans les cas les plus sévères, peut rester réfractaire aux traitements couramment utilisés et nécessiter in fine le recours à une oxygénation membranaire extracorporelle. Le développement d’un ventilateur liquidien par l’équipe Inolivent a ouvert une nouvelle voie thérapeutique en rendant possible l’utilisation de la ventilation liquidienne totale (VLT) qui utilise un perfluorocarbone liquide afin d’assurer les échanges gazeux tout en effectuant un lavage pulmonaire thérapeutique. En 2011, l’équipe Inolivent a montré la supériorité de la VLT pour retirer le méconium et assurer les échanges gazeux de façon plus efficace que le traitement contrôle, le lavage thérapeutique avec une solution diluée de surfactant exogène (S-LBA). À ce jour, il n’a jamais été montré la possibilité de ramener des agneaux en respiration spontanée au décours d’une VLT pour le traitement d’un SAM sévère. Les objectifs de cette étude sont i) montrer la possibilité de ramener des agneaux nouveau-nés en respiration spontanée sans aide respiratoire après le traitement d’un SAM sévère par VLT, ii) comparer l’efficacité avec le lavage par S-LBA. Méthodes : 12 agneaux nouveau-nés anesthésiés et curarisés ont été instrumentés chirurgicalement. Après l’induction d’un SAM sévère, les agneaux ont subi un lavage pulmonaire thérapeutique soit par VLT (n = 6) ou par S-LBA (n = 6). Les agneaux ont été sevrés de toute ventilation mécanique et suivit en respiration spontanée durant 36 h. Résultats : Il est possible de ramener en respiration spontanée des agneaux nouveau-nés traités par VLT pour le traitement d’un SAM sévère. Le temps nécessaire au sevrage de la ventilation mécanique conventionelle a été plus court chez le groupe S-LBA. Conclusion : Notre étude met en lumière pour la première fois connue à ce jour, la possibilité de ramener en respiration spontanée des agneaux nouveau-nés suivant une VLT dans le traitement d’un SAM sévère. Ces résultats très importants ouvrent la voie à des études sur l’utilisation de la VLT dans le traitement de détresses respiratoires aigües.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The work presented herein covers a broad range of research topics and so, in the interest of clarity, has been presented in a portfolio format. Accordingly, each chapter consists of its own introductory material prior to presentation of the key results garnered, this is then proceeded by a short discussion on their significance. In the first chapter, a methodology to facilitate the resolution and qualitative assessment of very large inorganic polyoxometalates was designed and implemented employing ion-mobility mass spectrometry. Furthermore, the potential of this technique for ‘mapping’ the conformational space occupied by this class of materials was demonstrated. These claims are then substantiated by the development of a tuneable, polyoxometalate-based calibration protocol that provided the necessary platform for quantitative assessments of similarly large, but unknown, polyoxometalate species. In addition, whilst addressing a major limitation of travelling wave ion mobility, this result also highlighted the potential of this technique for solution-phase cluster discovery. The second chapter reports on the application of a biophotovoltaic electrochemical cell for characterising the electrogenic activity inherent to a number of mutant Synechocystis strains. The intention was to determine the key components in the photosynthetic electron transport chain responsible for extracellular electron transfer. This would help to address the significant lack of mechanistic understanding in this field. Finally, in the third chapter, the design and fabrication of a low-cost, highly modular, continuous cell culture system is presented. To demonstrate the advantages and suitability of this platform for experimental evolution investigations, an exploration into the photophysiological response to gradual iron limitation, in both the ancestral wild type and a randomly generated mutant library population, was undertaken. Furthermore, coupling random mutagenesis to continuous culture in this way is shown to constitute a novel source of genetic variation that is open to further investigation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Evaluation of the quality of the environment is essential for human wellness as pollutants in trace amounts can cause serious health problem. Nitrosamines are a group of compounds that are considered potential carcinogens and can be found in drinking water (as disinfection byproducts), foods, beverages and cosmetics. To monitor the level of these compounds to minimize daily intakes, fast and reliable analytical techniques are required. As these compounds are relatively highly polar, extraction and enrichment from environmental samples (aqueous) are challenging. Also, the trend of analytical techniques toward the reduction of sample size and minimization of organic solvent use demands new methods of analysis. In light of fulfilling these requirements, a new method of online preconcentration tailored to an electrokinetic chromatography is introduced. In this method, electroosmotic flow (EOF) was suppressed to increase the interaction time between analyte and micellar phase, therefore the only force to mobilize the neutral analytes is the interaction of analyte with moving micelles. In absence of EOF, polarity of applied potential was switched (negative or positive) to force (anionic or cationic) micelles to move toward the detector. To avoid the excessive band broadening due to longer analysis time caused by slow moving micelles, auxiliary pressure was introduced to boost the micelle movement toward the detector using an in house designed and built apparatus. Applying the external auxiliary pressure significantly reduced the analysis times without compromising separation efficiency. Parameters, such as type of surfactants, composition of background electrolyte (BGE), type of capillary, matrix effect, organic modifiers, etc., were evaluated in optimization of the method. The enrichment factors for targeted analytes were impressive, particularly; cationic surfactants were shown to be suitable for analysis of nitrosamines due to their ability to act as hydrogen bond donors. Ammonium perfluorooctanoate (APFO) also showed remarkable results in term of peak shapes and number of theoretical plates. It was shown that the separation results were best when a high conductivity sample was paired with a BGE of lower conductivity. Using higher surfactant concentrations (up to 200 mM SDS) than usual (50 mM SDS) for micellar electrokinetic chromatography (MEKC) improved the sweeping. A new method for micro-extraction and enrichment of highly polar neutral analytes (N-Nitrosamines in particular) based on three-phase drop micro-extraction was introduced and its performance studied. In this method, a new device using some easy-to-find components was fabricated and its operation and application demonstrated. Compared to conventional extraction methods (liquid-liquid extraction), consumption of organic solvents and operation times were significantly lower.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The effects of the Linear Alkylbenzene Sulphonate (LAS) were evaluated on the mussel Perna perna (Linnaeus, 1758), using a cellular level biomarker. The Neutral Red Retention Time (NRRT) assay was used to estimate effects at cellular levels. Significant effects were observed for the NRRT assay, even in low concentrations. The effects at cellular level were progressive, suggesting that the organisms are not capable to recover of such increasing effects. Additionally, the results show that the levels of LAS observed for Brazilian coastal waters may chronically affect the biota.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

2D materials have attracted tremendous attention due to their unique physical and chemical properties since the discovery of graphene. Despite these intrinsic properties, various modification methods have been applied to 2D materials that yield even more exciting results. Among all modification methods, the intercalation of 2D materials provides the highest possible doping and/or phase change to the pristine 2D materials. This doping effect highly modifies 2D materials, with extraordinary electrical transport as well as optical, thermal, magnetic, and catalytic properties, which are advantageous for optoelectronics, superconductors, thermoelectronics, catalysis and energy storage applications. To study the property changes of 2D materials, we designed and built a planar nanobattery that allows electrochemical ion intercalation in 2D materials. More importantly, this planar nanobattery enables characterization of electrical, optical and structural properties of 2D materials in situ and real time upon ion intercalation. With this device, we successfully intercalated Li-ions into few layer graphene (FLG) and ultrathin graphite, heavily dopes the graphene to 0.6 x 10^15 /cm2, which simultaneously increased its conductivity and transmittance in the visible range. The intercalated LiC6 single crystallite achieved extraordinary optoelectronic properties, in which an eight-layered Li intercalated FLG achieved transmittance of 91.7% (at 550 nm) and sheet resistance of 3 ohm/sq. We extend the research to obtain scalable, printable graphene based transparent conductors with ion intercalation. Surfactant free, printed reduced graphene oxide transparent conductor thin film with Na-ion intercalation is obtained with transmittance of 79% and sheet resistance of 300 ohm/sq (at 550 nm). The figure of merit is calculated as the best pure rGO based transparent conductors. We further improved the tunability of the reduced graphene oxide film by using two layers of CNT films to sandwich it. The tunable range of rGO film is demonstrated from 0.9 um to 10 um in wavelength. Other ions such as K-ion is also studied of its intercalation chemistry and optical properties in graphitic materials. We also used the in situ characterization tools to understand the fundamental properties and improve the performance of battery electrode materials. We investigated the Na-ion interaction with rGO by in situ Transmission electron microscopy (TEM). For the first time, we observed reversible Na metal cluster (with diameter larger than 10 nm) deposition on rGO surface, which we evidenced with atom-resolved HRTEM image of Na metal and electron diffraction pattern. This discovery leads to a porous reduced graphene oxide sodium ion battery anode with record high reversible specific capacity around 450 mAh/g at 25mA/g, a high rate performance of 200 mAh/g at 250 mA/g, and stable cycling performance up to 750 cycles. In addition, direct observation of irreversible formation of Na2O on rGO unveils the origin of commonly observed low 1st Columbic Efficiency of rGO containing electrodes. Another example for in situ characterization for battery electrode is using the planar nanobattery for 2D MoS2 crystallite. Planar nanobattery allows the intrinsic electrical conductivity measurement with single crystalline 2D battery electrode upon ion intercalation and deintercalation process, which is lacking in conventional battery characterization techniques. We discovered that with a “rapid-charging” process at the first cycle, the lithiated MoS2 undergoes a drastic resistance decrease, which in a regular lithiation process, the resistance always increases after lithiation at its final stage. This discovery leads to a 2- fold increase in specific capacity with with rapid first lithiated MoS2 composite electrode material, compare with the regular first lithiated MoS2 composite electrode material, at current density of 250 mA/g.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Introduction: ABCA3 glycoprotein belongs to the ATP-binding cassette (ABC) superfamily of transporters, which utilize the energy derived from hydrolysis of ATP for the translocation of a wide variety of substrates across the plasma membrane. Mutations in the ABCA3 gene are knowingly causative for fatal surfactant deficiency, particularly respiratory distress syndrome (RDS) in term babies. Case Presentation: In this study, Sanger sequencing of the whole ABCA3 gene (NCBI NM_001089) was performed in a neonatal boy with severe RDS. A homozygous mutation has been identified in the patient. Parents were heterozygous for the same missense mutation GGA > AGA at position 202 in exon 6 of the ABCA3 gene (c.604G > A; p.G202R). Furthermore, 70 normal individuals have been analyzed for the mentioned change with negative results. Conclusions: Regarding Human Genome Mutation Database (HGMD) and other literature recherche, the detected change is a novel mutation and has not been reported before. Bioinformatics mutation predicting tools prefer it as pathogenic.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: Respiratory distress syndrome (RDS) is one of the most common diseases in neonates admitted to NICU. For this important cause of morbidity and mortality in preterm neonates, several treatment methods have been used. To date, non-invasive methods are preferred due to fewer complications. Objectives: Herein, two non-invasive methods of ventilation support are compared: NCPAP vs. NIPPV. Patients and Methods: This is a randomized clinical trial. Premature neonates with less than 34 weeks gestation, suffering from RDS entered the study, including 151 newborns admitted to Vali-Asr NICU during 2012-2013. Most of these patients received surfactant as early rescue via INSURE method and then randomly divided into two NCPAP (73 neonates) and NIPPV (78 neonates) groups. Both early and late complications are compared including extubation failure, hospital length of stay, GI perforation, apnea, intraventricular hemorrhage (IVH) and mortality rate. Results: The need for re-intubation was 6% in NIPPV vs. 17.6% in NCPAP group, which was statistically significant (P = 0.031). The length of hospital stay was 23.92 ± 13.5 vs. 32.61 ± 21.07 days in NIPPV and NCPAP groups, respectively (P = 0.002). Chronic lung disease (CLD) was reported to be 4% in NCPAP and 0% in NIPPV groups (P = 0.035). The most common complication occurred in both groups was traumatization of nasal skin and mucosa, all of which fully recovered. Gastrointestinal perforation was not reported in either group. Conclusions: This study reveals the hospital length of stay, re-intubation and BPD rates are significantly declined in neonates receiving NIPPV as the treatment for RDS.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The effects of the Linear Alkylbenzene Sulphonate (LAS) were evaluated on the mussel Perna perna, using physiological and genotoxic biomarkers. The Micronuclei (MN) assay was used to estimate effects at nuclear level, whereas the physiological effects were evaluated by measuring the oxygen consumption and ammonia excretion rates. Significant effects were observed for the MN assay and the ammonia excretion rate, even in low concentrations. The oxygen consumption was not affected in the tested concentrations. For MN and ammonia excretion, the animals exposed to intermediate concentrations were not affected, but responded to the higher concentrations, indicating the existence of compensatory mechanisms at physiological level. However, parallel to this study other authors indicate the presence of progressive effects at the cellular level, suggesting that the organisms are not capable to recover of such increasing effects. Additionally, the results show that the levels of LAS observed for Brazilian coastal waters may chronically affect the biota.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Carbon-supported Pt x –Rh y –Sn z catalysts (x:y:z = 3:1:4, 6:2:4, 9:3:4) are prepared by Pt, Rh, and Sn precursors reduction in different addition order. The materials are characterized by X-ray diffraction, transmission electron microscopy, and X-ray photoelectron spectroscopy techniques and are evaluated for the electrooxidation of ethanol in acidic media by cyclic voltammetry, chronoamperometry, and anode potentiostatic polarization. The influence of both the order in which the precursors are added and the composition of metals in the catalysts on the electrocatalytic activity and physico-chemical characteristics of Pt x –Rh y –Sn z /C catalysts is evaluated. Oxidized Rh species prevail on the surface of catalysts synthesized by simultaneous co-precipitation, thus demonstrating the influence of synthesis method on the oxidation state of catalysts. Furthermore, high amounts of Sn in composites synthesized by co-precipitation result in very active catalysts at low potentials (bifunctional effect), while medium Sn load is needed for sequentially deposited catalysts when the electronic effect is most important (high potentials), since more exposed Pt and Rh sites are needed on the catalyst surface to alcohol oxidation. The Pt3–Rh1–Sn4/C catalyst prepared by co-precipitation is the most active at potentials lower than 0.55 V (related to bifunctional effect), while the Pt6–Rh2–Sn4/C catalyst, prepared by sequential precipitation (first Rh and, after drying, Pt + Sn), is the most active above 0.55 V.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Purpose: To formulate the water in oil (W/O) emulsion of corn silk (CS) extract and to evaluate its stability at various storage conditions. Methods: Ethanol CS extract was prepared using maceration (cold) technique. A 4 % CS emulsion was prepared using varying concentrations of liquid paraffin, ABIL EM90 and water. The formulations were kept at 40 oC for 28 days and to screen out the less stable formulations. The remaining formulations were further stressed at 50 oC to choose the most stable formulation. The optimized formulation was evaluated for physical characteristics including phase separation, rheology and mean droplet size. The physical stability of the formulation was evaluated by monitoring these parameters over a period of 12 weeks at 8, 25, 40 and 40 oC, and 75 % RH. Results: The chosen formulation showed good resistance to phase separation on centrifugation under all storage conditions. Rheological behavior followed non-Newtonian pseudoplastic pattern at various storage conditions. Mean droplet size of freshly prepared formulation was 2.98 ± 1.32 µm and did not show significant (p < 0.05) changes at normal storage conditions (8 and 25 oC). Conclusion: The findings indicate that the developed CS extract W/O emulsion is stable and therefore may be suitable for topical use on skin as an antioxidant preparation.