943 resultados para Surface Characterization
Resumo:
Caveolins are a crucial component of plasma membrane (PM) caveolae but have also been localized to intracellular compartments, including the Golgi complex and lipid bodies. Mutant caveolins associated with human disease show aberrant trafficking to the PM and Golgi accumulation. We now show that the Golgi pool of mainly newly synthesized protein is detergent-soluble and predominantly in a monomeric state, in contrast to the surface pool. Caveolin at the PM is not recognized by specific caveolin antibodies unless PM cholesterol is depleted. Exit from the Golgi complex of wild-type caveolin-1 or -3, but not vesicular stomatitis virus-G protein, is modulated by changing cellular cholesterol levels. In contrast, a muscular dystrophy-associated mutant of caveolin-3, Cav3P104L, showed increased accumulation in the Golgi complex upon cholesterol treatment. In addition, we demonstrate that in response to fatty acid treatment caveolin can follow a previously undescribed pathway from the PM to lipid bodies and can move from lipid bodies to the PM in response to removal of fatty acids. The results suggest that cholesterol is a rate-limiting component for caveolin trafficking. Changes in caveolin flux through the exocytic pathway can therefore be an indicator of cellular cholesterol and fatty acid levels.
Resumo:
Highly ordered mesoporous bioactive glasses (MBGs) with different compositions have been synthesized by a combination of surfactant templating, sol-gel method and evaporation-induced self-assembly (EISA) processes. The texture properties and compositional homogeneity of MBGs have been characterized and compared with conventional bioactive glasses (BGs) synthesized in the absence of surfactants by evaporation method. The formation mechanism (pore - composition dependence) and compositional homogeneity in the case of MBG materials are different from those in conventional BGs. Unlike conventional sol-gel-derived BGs that shows a direct correlation between their composition and pore architecture, MBGs with different compositions may possess similar pore volume and uniformly distributed pore size when the same structure-directing agent is utilized. The framework of MBG is homogeneously distributed in composition at the nanoscale and the inorganic species generally exists in the form of amorphous phase. MBGs calcined at temperatures
Resumo:
New and published major and trace element abundances of elastic metasediments (mainly garnet-biotite-plagioclase schists) from the similar to 3.8 Ga Isua Greenstone Belt (IGB), southern West Greenland, are used in an attempt to identify the compositional characteristics of the protoliths of these sediments. Compositionally, the metasediments are heterogeneous with enrichment of LREE (La/Sm-chord = 1.1-3.9) and variable enrichment and depletion of HREE (Gd/Yb-chord = 0.8-4.3). Chondrite-normalized Eu is also variable, spanning a range from relative Eu depletion to enrichment (Eu/Eu* = 0.6-1.3). A series of geochemical and geological criteria provides conclusive evidence for a sedimentary origin, in disagreement with some previous studies that questioned the presence of genuine elastic metasediments. In particular, trace element systematics of IGB metasediments show strong resemblance to other well-documented Archaean clastic sediments, and are consistent with a provenance consisting of ultramafic, malic and felsic igneous rocks. Two schists, identified as metasomatized mafic igneous rocks from petrographic and field evidence, show distinct compositional differences to the metasediments. Major element systematics document incipient-to-moderate source weathering in the majority of metasediments, while signs of secondary K-addition are rare. Detailed inspection of Eu/Eu*, Fe2O3 and CIW (chemical index of weathering) relationships reveals that elevated iron contents (when compared to averages for continental crust) and strong relative enrichment in Eu may be due to precipitation of marine Fe-oxyhydroxides during deposition or diagenesis on the seafloor. Some of the IGB metasediments have yielded anomalous Nd-142 and W-182 isotopic compositions that were respectively interpreted in terms of early mantle differentiation processes and the presence of a meteorite component. Alternatively, W and possibly Nd isotopes could have been affected by thermal neutron capture on the Hadean surface. The latter process was tested in this study by analysis of Sm isotope compositions, which serve as an effective monitor for neutron capture effects. As no anomalous variation from terrestrial values was detected, we infer that isotope systematics (including W-182 and Nd-142) of IGB metasediments were not affected by neutron capture, but reflect decay of radioactive parent isotopes. Copyright (c) 2005 Elsevier Ltd.
Resumo:
Mesoporous Ni(OH)(2) was synthesized using cationic surfactant as template and urea as hydrolysis-controlling agent. Mesoporous NiO with centralized pore size distribution was obtained by calcining Ni(OH)(2) at different temperatures. The BET specific surface area reaches 477.7 m(2).g(-1) for NiO calcined at 523 K. Structure characterizations indicate the polycrystalline pore wall of mesoporous nickel oxide. The pore-formation mechanism is also deduced to be quasi-reverse micelle mechanism. Cyclic voltammetry shows the good capacitive behavior of these NiO samples due to its unique mesoporous structure when using large amount of NiO to fabricate electrode. Compared with NiO prepared by dip-coating and cathodic precipitation methods, this mesoporous NiO with controlled pore structure can be used in much larger amount to fabricate the electrode and still maintains high specific capacitance and good capacitive behavior.
Resumo:
The turbostratic mesoporous carbon blacks were prepared by catalytic chemical vapour decomposition (CCVD) of acetylene using Ni/MgO catalysts prepared by co-precipitation. The relationship between deposition conditions and the nanostructures of resultant carbon black materials was investigated. It was found that the turbostratic and textural structures of carbon blacks are dependent on the deposition temperature and nickel catalyst loading. Higher deposition temperature increases the carbon crystallite unit volume V-nano and reduces the surface area of carbon samples. Moreover, a smaller V-nano is produced by a higher Ni loading at the same deposition temperature. In addition of the pore structure and the active metal surface area of the catalyst, the graphitic degree or electronic conductivity of the carbon support is also a key issue to the activity of the supported catalyst. V-nano is a very useful parameter to describe the effect of the crystalline structure of carbon blacks on the reactivity of carbon blacks in oxygen-carbon reaction and the catalytic activity of carbon-supported catalyst in ammonia decomposition semi-quantitatively. (C) 2006 Elsevier B.V. All rights reserved.
Resumo:
Background. The factors behind the reemergence of severe, invasive group A streptococcal (GAS) diseases are unclear, but it could be caused by altered genetic endowment in these organisms. However, data from previous studies assessing the association between single genetic factors and invasive disease are often conflicting, suggesting that other, as-yet unidentified factors are necessary for the development of this class of disease. Methods. In this study, we used a targeted GAS virulence microarray containing 226 GAS genes to determine the virulence gene repertoires of 68 GAS isolates (42 associated with invasive disease and 28 associated with noninvasive disease) collected in a defined geographic location during a contiguous time period. We then employed 3 advanced machine learning methods (genetic algorithm neural network, support vector machines, and classification trees) to identify genes with an increased association with invasive disease. Results. Virulence gene profiles of individual GAS isolates varied extensively among these geographically and temporally related strains. Using genetic algorithm neural network analysis, we identified 3 genes with a marginal overrepresentation in invasive disease isolates. Significantly, 2 of these genes, ssa and mf4, encoded superantigens but were only present in a restricted set of GAS M-types. The third gene, spa, was found in variable distributions in all M-types in the study. Conclusions. Our comprehensive analysis of GAS virulence profiles provides strong evidence for the incongruent relationships among any of the 226 genes represented on the array and the overall propensity of GAS to cause invasive disease, underscoring the pathogenic complexity of these diseases, as well as the importance of multiple bacteria and/ or host factors.
Resumo:
n-Octyl-beta-D-glueopyranoside (OG) is a non-ionic glycolipid, which is used widely in biotechnical and biochemical applications. All-atom molecular dynamics simulations from two different initial coordinates and velocities in explicit solvent have been performed to characterize the structural behaviour of an OG aggregate at equilibrium conditions. Geometric packing properties determined from the simulations and small angle neutron scattering experiment state that OG micelles are more likely to exist in a non-spherical shape, even at the concentration range near to the critical micelle concentration (0.025 M). Despite few large deviations in the principal moment of inertia ratios, the average micelle shape calculated from both simulations is a prolate ellipsoid. The deviations at these time scales are presumably the temporary shape change of a micelle. However, the size of the micelle and the accessible surface areas were constant during the simulations with the micelle surface being rough and partially elongated. Radial distribution functions computed for the hydroxyl oxygen atoms of an OG show sharper peaks at a minimum van der Waals contact distance than the acetal oxygen, ring oxygen, and anomeric carbon atoms. This result indicates that these atoms are pointed outwards at the hydrophilic/hydrophobic interface, form hydrogen bonds with the water molecules, and thus hydrate the micelle surface effectively. (c) 2005 Elsevier Inc. All rights reserved.
Resumo:
A strategy for the production and subsequent characterization of biofunctionalized silica particles is presented. The particles were engineered to produce a bifunctional material capable of both (a) the attachment of fluorescent dyes for particle encoding and (b) the sequential modification of the surface of the particles to couple oligonucleotide probes. A combination of microscopic and analytical methods is implemented to demonstrate that modification of the particles with 3-aminopropyl trimethoxysilane results in an even distribution of amine groups across the particle surface. Evidence is provided to indicate that there are negligible interactions between the bound fluorescent dyes and the attached biomolecules. A unique approach was adopted to provide direct quantification of the oligonucleotide probe loading on the particle surface through X-ray photoelectron spectroscopy, a technique which may have a major impact for current researchers and users of bead-based technologies. A simple hybridization assay showing high sequence specificity is included to demonstrate the applicability of these particles to DNA screening.
Resumo:
There is interest in the use of sugar cane waste biomass for electricity cogeneration, by integrated gasification combined cycle (IGCC) processes. This paper describes one aspect of an overall investigation into the reactivity of cane wastes under pressurized IGGC conditions, for input into process design. There is currently a gap in understanding the morphological transformations experienced by cane waste biomass undergoing conversion to char during pressurized gasification, which is addressed by this work. Char residuals remaining after pressurized pyrolysis and carbon dioxide gasification were analysed by optical microscope, nitrogen (BET) adsorption analysis, SEM/EDS, TEM/EDS and XPS techniques. The amorphous cane plant silica structures were found to remain physically intact during entrained flow gasification, but chemically altered in the presence of other inorganic species. The resulting crystalline silicates were mesoporous (with surface areas of the order of 20 m(2) g(-1)) and contributed to much of the otherwise limited pore volume present in the residual chars. Coke deposition and intimate blending of the carbonaceous and inorganic species was identified. Progressive sintering of the silicates appeared to trap coke deposits in the pore network. As a result ash residuals showed significant organic contents, even after extensive additional oxidation in air. The implications of the findings are that full conversion of cane trash materials under pressurized IGCC conditions may be significantly hampered by the silica structures inherent in these biomass materials and that further research of the contributing phenomena is recommended.
Resumo:
The cyclone stickiness test (CST) technique was applied to measure the stickiness temperature and relative humidity of whey, honey, and apple juice powders. A moisture sorption isotherm study was conducted to analyze the surface moisture content of whey powder. The glass transition temperatures of the sample powder were analyzed using differential scanning calorimetry (DSC). The stickiness results of these products were found within 20 degrees C above their surface glass transition temperatures, which is well within the normal temperature range for glass transition in general. The results obtained by the CST technique were found consistent with DSC values.
Resumo:
Mesoporous chromium oxide (Cr2O3) nanocrystals were first synthesized by the thermal decomposition reaction of Cr(NO3)(3)(circle)9H(2)O using citric acid monohydrate (CA) as the mesoporous template agent. The texture and chemistry of chromium oxide nanocrystals were characterized by N-2 adsorption-desorption isotherms, FTIR, X-ray diffraction (XRD), UV-vis, and thermoanalytical methods. It was shown that the hydrate water and CA are the crucial factors in influencing the formation of mesoporous Cr2O3 nanocrystals in the mixture system. The decomposition of CA results in the formation of a mesoporous structure with wormlike pores. The hydrate water of the mixture provides surface hydroxyls that act as binders, making the nanocrystals aggregate. The pore structures and phases of chromium oxide are affected by the ratio of precursor-to-CA, thermal temperature, and time.
Resumo:
Titanium phosphate is currently a promising material for proton exchange membrane fuel cells applications (PEMFC) allowing for operation at high temperature conditions. In this work, titanium phosphate was synthesized from tetra iso-propoxide (TTIP) and orthophosphoric acid (H3PO4) in different ratios by a sol gel method. High BET surface areas of 271 m(2).g(-1) were obtained for equimolar Ti:P samples whilst reduced surface areas were observed by varying the molar ratio either way. Highest proton conductivity of 5.4 x 10(-2) S.cm(-1) was measured at 20 degrees C and 93% relative humidity (RH). However, no correlation was observed between surface area and proton conductivity. High proton conductivity was directly attributed to hydrogen bonding in P-OH groups and the water molecules retained in the sample structure. The proton conductivity increased with relative humidity, indicating that the Grotthuss mechanism governed proton transport. Further, sample Ti/P with 1:9 molar ratio showed proton conductivity in the order of 10(-1) S.cm(-1) (5% RH) and similar to 1.6x10(-2) S.cm(-1) (anhydrous condition) at 200 degrees C. These proton conductivities were mainly attributed to excess acid locked into the functionalized TiP structure, thus forming ionisable protons.
Resumo:
Aims: Characterization of the representative protozoan Acanthamoeba polyphaga surface carbohydrate exposure by a novel combination of flow cytometry and ligand-receptor analysis. Methods and Results: Trophozoite and cyst morphological forms were exposed to a panel of FITC-lectins. Population fluorescence associated with FITC-lectin binding to acanthamoebal surface moieties was ascertained by flow cytometry. Increasing concentrations of representative FITC-lectins, saturation binding and determination of K d and relative Bmax values were employed to characterize carbohydrate residue exposure. FITC-lectins specific for N-acetylglucosamine, N-acetylgalactosamine and mannose/glucose were readily bound by trophozoite and cyst surfaces. Minor incremental increases in FITC-lectin concentration resulted in significant differences in surface fluorescence intensity and supported the calculation of ligand-binding determinants, Kd and relative B max, which gave a trophozoite and cyst rank order of lectin affinity and surface receptor presence. Conclusions: Trophozoites and cysts expose similar surface carbohydrate residues, foremost amongst which is N-acetylglucosamine, in varying orientation and availability. Significance and Impact of the Study: The outlined versatile combination of flow cytometry and ligand-receptor analysis allowed the characterization of surface carbohydrate exposure by protozoan morphological forms and in turn will support a valid comparison of carbohydrate exposure by other single-cell protozoa and eucaryotic microbes analysed in the same manner.
Resumo:
Programmed cell death, apoptosis, is a highly regulated process that removes damaged or unwanted cells in vivo and has significant immunological implications. Defective clearance of apoptotic cells by macrophages (professional phagocytes) is known to result in chronic inflammatory and autoimmune disease. Tissue transglutaminase 2 (TG2) is a Ca2+-dependent protein cross linking enzyme known to play an important role in a number of cell functions. Up-regulation of TG2 is thought to be involved in monocyte to macrophage differentiation and defective clearance of apoptotic cells by TG2 null mice has been described though in this context the role of TG2 is yet to be fully elucidated. Cell surface-associated TG2 is now recognized as being important in regulating cell adhesion and migration, via its association with cell surface receptors such as syndecan-4, ß1 and ß3 integrin, but its extracellular role in the clearance of apoptotic cells is still not fully explored. Our work aims to characterize the role of TG2 and its partners (e.g. syndecan-4 and ß3 integrin) in macrophage function within the framework of apoptotic cell clearance. Both THP-1 cell-derived macrophage-like cells and primary human macrophages were analyzed for the expression and function of TG2. Macrophage-apoptotic cell interaction studies in the presence of TG2 inhibitors (both cell permeable and impermeable, irreversible and active site directed) resulted in significant inhibition of interaction indicating a possible role for TG2 in apoptotic cell clearance. Macrophage cell surface TG2 and, in particular, its cell surface crosslinking activity was found to be crucial in dictating apoptotic cell clearance. Our further studies demonstrate syndecan-4 association with TG2 and imply possible cooperation of these proteins in apoptotic cell clearance. Knockdown studies of syndecan-4 reveal its importance in apoptotic cell clearance. Our current findings suggest that TG2 has a crucial but yet to be fully defined role in apoptotic cell clearance which seems to involve protein cross linking and interaction with other cell surface receptors.