960 resultados para Sugarcane burning


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The multi-criteria decision making methods, Preference METHods for Enrichment Evaluation (PROMETHEE) and Graphical Analysis for Interactive Assistance (GAIA), and the two-way Positive Matrix Factorization (PMF) receptor model were applied to airborne fine particle compositional data collected at three sites in Hong Kong during two monitoring campaigns held from November 2000 to October 2001 and November 2004 to October 2005. PROMETHEE/GAIA indicated that the three sites were worse during the later monitoring campaign, and that the order of the air quality at the sites during each campaign was: rural site > urban site > roadside site. The PMF analysis on the other hand, identified 6 common sources at all of the sites (diesel vehicle, fresh sea salt, secondary sulphate, soil, aged sea salt and oil combustion) which accounted for approximately 68.8 ± 8.7% of the fine particle mass at the sites. In addition, road dust, gasoline vehicle, biomass burning, secondary nitrate, and metal processing were identified at some of the sites. Secondary sulphate was found to be the highest contributor to the fine particle mass at the rural and urban sites with vehicle emission as a high contributor to the roadside site. The PMF results are broadly similar to those obtained in a previous analysis by PCA/APCS. However, the PMF analysis resolved more factors at each site than the PCA/APCS. In addition, the study demonstrated that combined results from multi-criteria decision making analysis and receptor modelling can provide more detailed information that can be used to formulate the scientific basis for mitigating air pollution in the region.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Bananas are hosts to a large number of banana streak virus (BSV) species. However, diagnostic methods for BSV are inadequate because of the considerable genetic and serological diversity amongst BSV isolates and the presence of integrated BSV sequences in some banana cultivars which leads to false positives. In this study, a sequence non-specific, rolling-circle amplification (RCA) technique was developed and shown to overcome these limitations for the detection and subsequent characterisation of BSV isolates infecting banana. This technique was shown to discriminate between integrated and episomal BSV DNA, specifically detecting the latter in several banana cultivars known to contain episomal and/or integrated sequences of Banana streak Mysore virus (BSMyV), Banana streak OL virus (BSOLV) and Banana streak GF virus (BSGFV). Using RCA, the presence of BSMyV and BSOLV was confirmed in Australia, while BSOLV, BSGFV, Banana streak Uganda I virus (BSUgIV), Banana streak Uganda L virus (BSUgLV) and Banana streak Uganda M virus (BSUgMV) were detected in Uganda. This is the first confirmed report of episomally-derived BSUglV, BSUgLV and BSUgMV in Uganda. As well as its ability to detect BSV, RCA was shown to detect two other pararetroviruses, Sugarcane bacilliform virus in sugarcane and Cauliflower mosaic virus in turnip.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Airborne fine particles were collected at a suburban site in Queensland, Australia between 1995 and 2003. The samples were analysed for 21 elements, and Positive Matrix Factorisation (PMF), Preference Ranking Organisation METHods for Enrichment Evaluation (PROMETHEE) and Graphical Analysis for Interactive Assistance (GAIA) were applied to the data. PROMETHEE provided information on the ranking of pollutant levels from the sampling years while PMF provided insights into the sources of the pollutants, their chemical composition, most likely locations and relative contribution to the levels of particulate pollution at the site. PROMETHEE and GAIA found that the removal of lead from fuel in the area had a significant impact on the pollution patterns while PMF identified 6 pollution sources including: Railways (5.5%), Biomass Burning (43.3%), Soil (9.2%), Sea Salt (15.6%), Aged Sea Salt (24.4%) and Motor Vehicles (2.0%). Thus the results gave information that can assist in the formulation of mitigation measures for air pollution.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Promoted ignition testing (NASA) Test 17) [1] is used to determine the relative flammability of metal rods in oxygen-enriched atmospheres. A promotor is used to ignite a metal sample rod, initiating sample burning. If a predetermined length of the sample burns, beyond the promotor, the material is considered flammable at the condition tested. Historically, this burn length has been somewhat arbitrary. Experiments were performed to better understand this test by obtaining insight into the effect a burning promotor has on the preheating of a test sample. Test samples of several metallic materials were prepared and coupled to fast-responding thermocouples along their length. Thermocouple measurements and test video were synchronized to determine temperature increase with respect to time and length along each test sample. A recommended flammability burn length, based on a sample preheat of 500 degrees fahrenheit, was determined based on the preheated zone measured from these tests. This length was determined to be 30 mm (1.18 in.). Validation of this length and its rationale are presented.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background Both sorghum (Sorghum bicolor) and sugarcane (Saccharum officinarum) are members of the Andropogoneae tribe in the Poaceae and are each other's closest relatives amongst cultivated plants. Both are relatively recent domesticates and comparatively little of the genetic potential of these taxa and their wild relatives has been captured by breeding programmes to date. This review assesses the genetic gains made by plant breeders since domestication and the progress in the characterization of genetic resources and their utilization in crop improvement for these two related species. Genetic Resources The genome of sorghum has recently been sequenced providing a great boost to our knowledge of the evolution of grass genomes and the wealth of diversity within S. bicolor taxa. Molecular analysis of the Sorghum genus has identified close relatives of S. bicolor with novel traits, endosperm structure and composition that may be used to expand the cultivated gene pool. Mutant populations (including TILLING populations) provide a useful addition to genetic resources for this species. Sugarcane is a complex polyploid with a large and variable number of copies of each gene. The wild relatives of sugarcane represent a reservoir of genetic diversity for use in sugarcane improvement. Techniques for quantitative molecular analysis of gene or allele copy number in this genetically complex crop have been developed. SNP discovery and mapping in sugarcane has been advanced by the development of high-throughput techniques for ecoTILLING in sugarcane. Genetic linkage maps of the sugarcane genome are being improved for use in breeding selection. The improvement of both sorghum and sugarcane will be accelerated by the incorporation of more diverse germplasm into the domesticated gene pools using molecular tools and the improved knowledge of these genomes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

For the filling and reconstruction of non-healing bone defects, the application of porous ceramic scaffold as bone substitutes is considered to be a reasonable choice. In bone tissue engineering, an ideal scaffold must satisfy several criterias such as open porosity, having high compressive strength (it depends where in body, and if external fixatures are used) and the practicability for cell migration. Many researchers have focused on enhancing the mechanical properties of hydroxyapatite scaffolds by combining it with other biomaterials, such as bioglass and polymers. Nevertheless, there is still a lack of suitable scaffolds based on porous biomaterials. In this study, zirconia scaffolds from two different templates (polyurethane (PU) and Acrylonitrile Butadiene Styrene (ABS) templates) were successfully fabricated with dissimilar fabrication techniques. The scaffold surfaces were further modified with mesoporous bioglass for the purpose of bone tissue engineering. In the study of PU template scaffold, high porosity (~88%) sol-gel derived yttria-stabilized zirconia (YSZ) scaffold was prepared by a polyurethane (PU) foam replica method using sol-gel derived zirconia for the first time, and double coated with Mesoporous Bioglass (MBGs) coating. For the ABS template scaffold, two types of templates (cube and cylinder) with different strut spacings were used and fabricated by a 3D Rapid Prototyper. Subsequently, zirconia scaffolds with low porosity (63±2.8% to 68±2.5%) were fabricated by embedding the zirconia powder slurry into the ABS templates and burning out the ABS to produce a uniform porous structure. The zirconia scaffolds were double coated with mesoporous bioglass by dip coating for the first time. The porosities of the scaffolds were calculated before and after coating. The microstructures were then examined using scanning electron microscopy and the mechanical properties were evaluated using compressive test. Accordingly, relationships between microstructure, processing and mechanical behaviour of the porous zirconia was discussed. Scaffold biocompatibility and bioactivity was also evaluated using a bone marrow stromal cell (BMSC) proliferation test and a simulated body fluid test.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Queensland University of Technology (QUT) allows the presentation of a thesis for the Degree of Doctor of Philosophy in the format of published or submitted papers, where such papers have been published, accepted or submitted during the period of candidature. This thesis is composed of Seven published/submitted papers and one poster presentation, of which five have been published and the other two are under review. This project is financially supported by the QUTPRA Grant. The twenty-first century started with the resurrection of lignocellulosic biomass as a potential substitute for petrochemicals. Petrochemicals, which enjoyed the sustainable economic growth during the past century, have begun to reach or have reached their peak. The world energy situation is complicated by political uncertainty and by the environmental impact associated with petrochemical import and usage. In particular, greenhouse gasses and toxic emissions produced by petrochemicals have been implicated as a significant cause of climate changes. Lignocellulosic biomass (e.g. sugarcane biomass and bagasse), which potentially enjoys a more abundant, widely distributed, and cost-effective resource base, can play an indispensible role in the paradigm transition from fossil-based to carbohydrate-based economy. Poly(3-hydroxybutyrate), PHB has attracted much commercial interest as a plastic and biodegradable material because some its physical properties are similar to those of polypropylene (PP), even though the two polymers have quite different chemical structures. PHB exhibits a high degree of crystallinity, has a high melting point of approximately 180°C, and most importantly, unlike PP, PHB is rapidly biodegradable. Two major factors which currently inhibit the widespread use of PHB are its high cost and poor mechanical properties. The production costs of PHB are significantly higher than for plastics produced from petrochemical resources (e.g. PP costs $US1 kg-1, whereas PHB costs $US8 kg-1), and its stiff and brittle nature makes processing difficult and impedes its ability to handle high impact. Lignin, together with cellulose and hemicellulose, are the three main components of every lignocellulosic biomass. It is a natural polymer occurring in the plant cell wall. Lignin, after cellulose, is the most abundant polymer in nature. It is extracted mainly as a by-product in the pulp and paper industry. Although, traditionally lignin is burnt in industry for energy, it has a lot of value-add properties. Lignin, which to date has not been exploited, is an amorphous polymer with hydrophobic behaviour. These make it a good candidate for blending with PHB and technically, blending can be a viable solution for price and reduction and enhance production properties. Theoretically, lignin and PHB affect the physiochemical properties of each other when they become miscible in a composite. A comprehensive study on structural, thermal, rheological and environmental properties of lignin/PHB blends together with neat lignin and PHB is the targeted scope of this thesis. An introduction to this research, including a description of the research problem, a literature review and an account of the research progress linking the research papers is presented in Chapter 1. In this research, lignin was obtained from bagasse through extraction with sodium hydroxide. A novel two-step pH precipitation procedure was used to recover soda lignin with the purity of 96.3 wt% from the black liquor (i.e. the spent sodium hydroxide solution). The precipitation process is presented in Chapter 2. A sequential solvent extraction process was used to fractionate the soda lignin into three fractions. These fractions, together with the soda lignin, were characterised to determine elemental composition, purity, carbohydrate content, molecular weight, and functional group content. The thermal properties of the lignins were also determined. The results are presented and discussed in Chapter 2. On the basis of the type and quantity of functional groups, attempts were made to identify potential applications for each of the individual lignins. As an addendum to the general section on the development of composite materials of lignin, which includes Chapters 1 and 2, studies on the kinetics of bagasse thermal degradation are presented in Appendix 1. The work showed that distinct stages of mass losses depend on residual sucrose. As the development of value-added products from lignin will improve the economics of cellulosic ethanol, a review on lignin applications, which included lignin/PHB composites, is presented in Appendix 2. Chapters 3, 4 and 5 are dedicated to investigations of the properties of soda lignin/PHB composites. Chapter 3 reports on the thermal stability and miscibility of the blends. Although the addition of soda lignin shifts the onset of PHB decomposition to lower temperatures, the lignin/PHB blends are thermally more stable over a wider temperature range. The results from the thermal study also indicated that blends containing up to 40 wt% soda lignin were miscible. The Tg data for these blends fitted nicely to the Gordon-Taylor and Kwei models. Fourier transform infrared spectroscopy (FT-IR) evaluation showed that the miscibility of the blends was because of specific hydrogen bonding (and similar interactions) between reactive phenolic hydroxyl groups of lignin and the carbonyl group of PHB. The thermophysical and rheological properties of soda lignin/PHB blends are presented in Chapter 4. In this chapter, the kinetics of thermal degradation of the blends is studied using thermogravimetric analysis (TGA). This preliminary investigation is limited to the processing temperature of blend manufacturing. Of significance in the study, is the drop in the apparent energy of activation, Ea from 112 kJmol-1 for pure PHB to half that value for blends. This means that the addition of lignin to PHB reduces the thermal stability of PHB, and that the comparative reduced weight loss observed in the TGA data is associated with the slower rate of lignin degradation in the composite. The Tg of PHB, as well as its melting temperature, melting enthalpy, crystallinity and melting point decrease with increase in lignin content. Results from the rheological investigation showed that at low lignin content (.30 wt%), lignin acts as a plasticiser for PHB, while at high lignin content it acts as a filler. Chapter 5 is dedicated to the environmental study of soda lignin/PHB blends. The biodegradability of lignin/PHB blends is compared to that of PHB using the standard soil burial test. To obtain acceptable biodegradation data, samples were buried for 12 months under controlled conditions. Gravimetric analysis, TGA, optical microscopy, scanning electron microscopy (SEM), differential scanning calorimetry (DSC), FT-IR, and X-ray photoelectron spectroscopy (XPS) were used in the study. The results clearly demonstrated that lignin retards the biodegradation of PHB, and that the miscible blends were more resistant to degradation compared to the immiscible blends. To obtain an understanding between the structure of lignin and the properties of the blends, a methanol-soluble lignin, which contains 3× less phenolic hydroxyl group that its parent soda lignin used in preparing blends for the work reported in Chapters 3 and 4, was blended with PHB and the properties of the blends investigated. The results are reported in Chapter 6. At up to 40 wt% methanolsoluble lignin, the experimental data fitted the Gordon-Taylor and Kwei models, similar to the results obtained soda lignin-based blends. However, the values obtained for the interactive parameters for the methanol-soluble lignin blends were slightly lower than the blends obtained with soda lignin indicating weaker association between methanol-soluble lignin and PHB. FT-IR data confirmed that hydrogen bonding is the main interactive force between the reactive functional groups of lignin and the carbonyl group of PHB. In summary, the structural differences existing between the two lignins did not manifest itself in the properties of their blends.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Metallic materials exposed to oxygen-enriched atmospheres – as commonly used in the medical, aerospace, aviation and numerous chemical processing industries – represent a significant fire hazard which must be addressed during design, maintenance and operation. Hence, accurate knowledge of metallic materials flammability is required. Reduced gravity (i.e. space-based) operations present additional unique concerns, where the absence of gravity must also be taken into account. The flammability of metallic materials has historically been quantified using three standardised test methods developed by NASA, ASTM and ISO. These tests typically involve the forceful (promoted) ignition of a test sample (typically a 3.2 mm diameter cylindrical rod) in pressurised oxygen. A test sample is defined as flammable when it undergoes burning that is independent of the ignition process utilised. In the standardised tests, this is indicated by the propagation of burning further than a defined amount, or „burn criterion.. The burn criterion in use at the onset of this project was arbitrarily selected, and did not accurately reflect the length a sample must burn in order to be burning independent of the ignition event and, in some cases, required complete consumption of the test sample for a metallic material to be considered flammable. It has been demonstrated that a) a metallic material.s propensity to support burning is altered by any increase in test sample temperature greater than ~250-300 oC and b) promoted ignition causes an increase in temperature of the test sample in the region closest to the igniter, a region referred to as the Heat Affected Zone (HAZ). If a test sample continues to burn past the HAZ (where the HAZ is defined as the region of the test sample above the igniter that undergoes an increase in temperature of greater than or equal to 250 oC by the end of the ignition event), it is burning independent of the igniter, and should be considered flammable. The extent of the HAZ, therefore, can be used to justify the selection of the burn criterion. A two dimensional mathematical model was developed in order to predict the extent of the HAZ created in a standard test sample by a typical igniter. The model was validated against previous theoretical and experimental work performed in collaboration with NASA, and then used to predict the extent of the HAZ for different metallic materials in several configurations. The extent of HAZ predicted varied significantly, ranging from ~2-27 mm depending on the test sample thermal properties and test conditions (i.e. pressure). The magnitude of the HAZ was found to increase with increasing thermal diffusivity, and decreasing pressure (due to slower ignition times). Based upon the findings of this work, a new burn criterion requiring 30 mm of the test sample to be consumed (from the top of the ignition promoter) was recommended and validated. This new burn criterion was subsequently included in the latest revision of the ASTM G124 and NASA 6001B international test standards that are used to evaluate metallic material flammability in oxygen. These revisions also have the added benefit of enabling the conduct of reduced gravity metallic material flammability testing in strict accordance with the ASTM G124 standard, allowing measurement and comparison of the relative flammability (i.e. Lowest Burn Pressure (LBP), Highest No-Burn Pressure (HNBP) and average Regression Rate of the Melting Interface(RRMI)) of metallic materials in normal and reduced gravity, as well as determination of the applicability of normal gravity test results to reduced gravity use environments. This is important, as currently most space-based applications will typically use normal gravity information in order to qualify systems and/or components for reduced gravity use. This is shown here to be non-conservative for metallic materials which are more flammable in reduced gravity. The flammability of two metallic materials, Inconel® 718 and 316 stainless steel (both commonly used to manufacture components for oxygen service in both terrestrial and space-based systems) was evaluated in normal and reduced gravity using the new ASTM G124-10 test standard. This allowed direct comparison of the flammability of the two metallic materials in normal gravity and reduced gravity respectively. The results of this work clearly show, for the first time, that metallic materials are more flammable in reduced gravity than in normal gravity when testing is conducted as described in the ASTM G124-10 test standard. This was shown to be the case in terms of both higher regression rates (i.e. faster consumption of the test sample – fuel), and burning at lower pressures in reduced gravity. Specifically, it was found that the LBP for 3.2 mm diameter Inconel® 718 and 316 stainless steel test samples decreased by 50% from 3.45 MPa (500 psia) in normal gravity to 1.72 MPa (250 psia) in reduced gravity for the Inconel® 718, and 25% from 3.45 MPa (500 psia) in normal gravity to 2.76 MPa (400 psia) in reduced gravity for the 316 stainless steel. The average RRMI increased by factors of 2.2 (27.2 mm/s in 2.24 MPa (325 psia) oxygen in reduced gravity compared to 12.8 mm/s in 4.48 MPa (650 psia) oxygen in normal gravity) for the Inconel® 718 and 1.6 (15.0 mm/s in 2.76 MPa (400 psia) oxygen in reduced gravity compared to 9.5 mm/s in 5.17 MPa (750 psia) oxygen in normal gravity) for the 316 stainless steel. Reasons for the increased flammability of metallic materials in reduced gravity compared to normal gravity are discussed, based upon the observations made during reduced gravity testing and previous work. Finally, the implications (for fire safety and engineering applications) of these results are presented and discussed, in particular, examining methods for mitigating the risk of a fire in reduced gravity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Smut fungi are important pathogens of grasses, including the cultivated crops maize, sorghum and sugarcane. Typically, smut fungi infect the inflorescence of their host plants. Three genera of smut fungi (Ustilago, Sporisorium and Macalpinomyces) form a complex with overlapping morphological characters, making species placement problematic. For example, the newly described Macalpinomyces mackinlayi possesses a combination of morphological characters such that it cannot be unambiguously accommodated in any of the three genera. Previous attempts to define Ustilago, Sporisorium and Macalpinomyces using morphology and molecular phylogenetics have highlighted the polyphyletic nature of the genera, but have failed to produce a satisfactory taxonomic resolution. A detailed systematic study of 137 smut species in the Ustilago-Sporisorium- Macalpinomyces complex was completed in the current work. Morphological and DNA sequence data from five loci were assessed with maximum likelihood and Bayesian inference to reconstruct a phylogeny of the complex. The phylogenetic hypotheses generated were used to identify morphological synapomorphies, some of which had previously been dismissed as a useful way to delimit the complex. These synapomorphic characters are the basis for a revised taxonomic classification of the Ustilago-Sporisorium-Macalpinomyces complex, which takes into account their morphological diversity and coevolution with their grass hosts. The new classification is based on a redescription of the type genus Sporisorium, and the establishment of four genera, described from newly recognised monophyletic groups, to accommodate species expelled from Sporisorium. Over 150 taxonomic combinations have been proposed as an outcome of this investigation, which makes a rigorous and objective contribution to the fungal systematics of these important plant pathogens.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Australian climate, soils and agricultural management practices are significantly different from those of the northern hemisphere nations. Consequently, experimental data on greenhouse gas production from European and North American agricultural soils and its interpretation are unlikely to be directly applicable to Australian systems. A programme of studies of non-CO2 greenhouse gas emissions from agriculture has been established that is designed to reduce uncertainty of non-CO2 greenhouse gas emissions in the Australian National Greenhouse Gas Inventory and provide outputs that will enable better on-farm management practices for reducing non-CO2 greenhouse gas emissions, particularly nitrous oxide. The systems being examined and their locations are irrigated pasture (Kyabram Victoria), irrigated cotton (Narrabri, NSW), irrigated maize (Griffith, NSW), rain-fed wheat (Rutherglen, Victoria) and rain-fed wheat (Cunderdin, WA). The field studies include treatments with and without fertilizer addition, stubble burning versus stubble retention, conventional cultivation versus direct drilling and crop rotation to determine emission factors and treatment possibilities for best management options. The data to date suggest that nitrous oxide emissions from nitrogen fertilizer, applied to irrigated dairy pastures and rain-fed winter wheat, appear much lower than the average of northern hemisphere grain and pasture studies. More variable emissions have been found in studies of irrigated cotton/vetch/wheat rotation and substantially higher emissions from irrigated maize.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The present study examined experimentally the phenological responses of a range of plant species to rises in temperature. We used the climate-change field protocol of the International Tundra Experiment (ITEX), which measures plant responses to warming of 1 to 2°C inside small open-topped chambers. The field study was established on the Bogong High Plains, Australia, in subalpine open heathlands; the most common treeless plant community on the Bogong High Plains. The study included areas burnt by fire in 2003, and therefore considers the interactive effects of warming and fire, which have rarely been studied in high mountain environments. From November 2003 to March 2006, various phenological phases were monitored inside and outside chambers during the snow-free periods. Warming resulted in earlier occurrence of key phenological events in 7 of the 14 species studied. Burning altered phenology in 9 of 10 species studied, with both earlier and later phenological changes depending on the species. There were no common phenological responses to warming or burning among species of the same family, growth form or flowering type (i.e. early or late-flowering species), when all phenological events were examined. The proportion of plants that formed flower buds was influenced by fire in half of the species studied. The findings support previous findings of ITEX and other warming experiments; that is, species respond individualistically to experimental warming. The inter-year variation in phenological response, the idiosyncratic nature of the responses to experimental warming among species, and an inherent resilience to fire, may result in community resilience to short-term climate change. In the first 3 years of experimental warming, phenological responses do not appear to be driving community-level change. Our findings emphasise the value of examining multiple species in climate-change studies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The paper presents the results of a study conducted into the relationship between dwelling characteristics and occupant activities with the respiratory health of resident women and children in Lao People’s Democratic Republic (PDR). Lao is one of the least developed countries in south-east Asia with poor life expectancies and mortality rates. The study, commissioned by the World Health Organisation, included questionnaires delivered to residents of 356 dwellings in nine districts in Lao PDR over a five month period (December 2005-April 2006), with the aim of identifying the association between respiratory health and indoor air pollution, in particular exposures related to indoor biomass burning. Adjusted odds ratios were calculated for each health outcome separately using binary logistic regression. After adjusting for age, a wide range of symptoms of respiratory illness in women and children aged 1-4 years were positively associated with a range of indoor exposures related to indoor cooking, including exposure to a fire and location of the cooking place. Among women, “dust always inside the house” and smoking were also identified as strong risk factors for respiratory illness. Other strong risk factors for children, after adjusting for age and gender, included dust and drying clothes inside. This analysis confirms the role of indoor air pollution in the burden of disease among women and children in Lao PDR.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Among the available alternative sources of energy in Bangladesh bio-oil is recognized to be a promising alternative energy source. Bio-oil can be extracted by pyrolysis as well as expelling or solvent extractionmethod. In these days bio-oil is merely used in vehicles and power plants after some up gradation .However, it is not used for domestic purposes like cooking and lighting due to its high density and viscosity. This paper outlines the design of a gravity stove to use high dense and viscous bio-oil for cooking purpose. For this, Pongamia pinnata (karanj) oil extracted by solvent extraction method is used as fuel fed under gravity force. Efficiency of gravity stove with high dense and viscous bio-oil (karanj) is 11.81% which of kerosene stove is 17.80% also the discharge of karanj oil through gravity stove is sufficient for continuous burning. Thus, bio-oil can be effective replacement of kerosene for domestic purposes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The presence of colour in raw sugar plays a key role in the marketing strategy of the Australian raw sugar industry. Some sugars are relatively difficult to decolourise during refining and develop colour during storage. A new approach that might result in efficient and cost-effective colour removal during the sugar manufacturing process is the use of an advanced oxidation process (AOP), known as Fenton oxidation, that is, catalytic production of hydroxyl radicals from the decomposition of hydrogen peroxide using ferrous iron. As a first step towards developing this technology, this study determined the composition of colour precursors present in the juice of cane harvested by three different methods. The methods were harvesting cane after burning, harvesting the whole crop with half of the trash extracted and harvesting the whole crop with no trash extracted. The study also investigated the degradation at pH 3, 4 and 5 of a phenolic compound, caffeic acid (3,4–dihydroxycinnamic acid), which is present in sugar cane juice, using both hydrogen peroxide and Fenton’s reagent. The results show that juice expressed from whole crop cane has significantly higher colour than juices expressed from burnt cane. However, the concentrations of phenolic acids were lower in the juices expressed from whole crop cane. The main phenolic acids present in these juices were p-coumaric, vanillic, 2,3–dihydroxybenzoic, gallic and 3,4–dihydroxybenzoic acids. The degradation of caffeic acid significantly improved using Fenton’s reagent in comparison to hydrogen peroxide alone. The Fenton oxidation was optimum at pH 5 when up to ~86 % of caffeic acid degraded within 5 min.