996 resultados para Stylocheilus Striatus (formerly Longicauda)
Resumo:
Any stressed photoelastic medium can be reduced to an optically equivalent model consisting of a linear retarder, with retardation delta1 and principal axis at azimuth phgr1, and a pure rotator of power phgr2. The paper describes two simple methods to determine these quantities experimentally. Further, a method is described to overcome the problem of rotational effects in scattered-light investigations. This new method makes use of the experimentally determined characteristic parameters.
Resumo:
A method based on an assumption that the radial bending moment is zero at a nodal circle is shown to yield accurate estimates of natural frequencies corresponding to higher modes of transversely vibrating polar orthotropic annular plates for various combinations of clamped, simply supported and free edge conditions. This method is found to be convenient for the determination of locations of nodal circles as well. Numerical investigations revealed that for small holes, nodal circles tend to move towards the outer edge with increasing number of nodal diameters. For large holes, it has been shown that the plate behaves like a long rectangular strip.
Resumo:
THE following equations governing the phenomenon of intrinsic instability of combustion, leading to low frequency oscillations in a rocket motor using a single liquid propellant, were derived and investigated by L. Crocco.
Resumo:
Investigations have been carried out of some aspects of the fine-scale structure of turbulence in grid flows, in boundary layers in a zero pressure gradient and in a boundary layer in a strong favourable pressure gradient leading to relaminarization. Using a narrow-band filter with suitable mid-band frequencies, the properties of the fine-scale structure (appearing as high frequency pulses in the filtered signal) were analysed using the variable discriminator level technique employed earlier by Rao, Narasimha & Badri Narayanan (1971). It was found that, irrespective of the type of flow, the characteristic pulse frequency (say Np) defined by Rao et al. was about 0·6 times the frequency of the zero crossings. It was also found that, over the small range of Reynolds numbers tested, the ratio of the width of the fine-scale regions to the Kolmogorov scale increased linearly with Reynolds number in grid turbulence as well as in flat-plate boundarylayer flow. Nearly lognormal distributions were exhibited by this ratio as well as by the interval between successive zero crossings. The values of Np and of the zero-crossing rate were found to be nearly constant across the boundary layer, except towards its outer edge and very near the wall. In the zero-pressure-gradient boundary-layer flow, very near the wall the high frequency pulses were found to occur mostly when the longitudinal velocity fluctuation u was positive (i.e. above the mean), whereas in the outer part of the boundary layer the pulses more often occurred when u was negative. During acceleration this correlation between the fine-scale motion and the sign of u was less marked.
Resumo:
The equal-channel angular extrusion (ECAE) of Ti-bearing interstitial-free (IF) steel was performed following two different routes, up to four passes, at a temperature of 300 degrees C. The ECAE led to a grain refinement to submicron size. After the second pass, the grain size attained saturation thereafter. The microstructural analysis indicated the presence of coincident-site lattice (CSL) boundaries in significant fraction, in addition to a high volume fraction of high-angle random boundaries and some low-angle boundaries after the deformation. Among the special boundaries, Sigma 3 and Sigma 13 were the most prominent ones and their fraction depended on the processing route followed. A deviation in the misorientation angle distribution from the Mackenzie distribution was noticed. The crystallographic texture after the first pass resembled that of simple shear, with the {112}, {110}, and {123} aligned to the macroscopic shear plane.
Resumo:
Using the framework of a new relaxation system, which converts a nonlinear viscous conservation law into a system of linear convection-diffusion equations with nonlinear source terms, a finite variable difference method is developed for nonlinear hyperbolic-parabolic equations. The basic idea is to formulate a finite volume method with an optimum spatial difference, using the Locally Exact Numerical Scheme (LENS), leading to a Finite Variable Difference Method as introduced by Sakai [Katsuhiro Sakai, A new finite variable difference method with application to locally exact numerical scheme, journal of Computational Physics, 124 (1996) pp. 301-308.], for the linear convection-diffusion equations obtained by using a relaxation system. Source terms are treated with the well-balanced scheme of Jin [Shi Jin, A steady-state capturing method for hyperbolic systems with geometrical source terms, Mathematical Modeling Numerical Analysis, 35 (4) (2001) pp. 631-645]. Bench-mark test problems for scalar and vector conservation laws in one and two dimensions are solved using this new algorithm and the results demonstrate the efficiency of the scheme in capturing the flow features accurately.
Resumo:
In the face of increasing CO2 emissions from conventional energy (gasoline), and the anticipated scarcity of Crude oil, a worldwide effort is underway for cost-effective renewable alternative energy sources. Here, we review a simple line of reasoning: (a) geologists claim that Much crude oil comes from diatoms; (b) diatoms do indeed make oil; (c) agriculturists Claim that diatoms could make 10-200 times as much oil per hectare as oil seeds; and (d) therefore, sustainable energy could be made from diatoms. In this communication, we propose ways of harvesting oil from diatoms, using biochemical engineering and also a new solar panel approach that utilizes genomically modifiable aspects of diatom biology, offering the prospect of ``milking'' diatoms for Sustainable energy by altering them to actively secrete oil products. Secretion by and milking of diatoms may provide a way around the puzzle of how to make algae that both grow quickly and have a very high oil content.
Resumo:
This paper presents an optimization of the performance of a recently proposed virtual sliding target (VST) guidance scheme in terms of maximization of its launch envelope for three- dimensional (3-D) engagements. The objective is to obtain the launch envelope of the missile using the VST guidance scheme for different lateral launch angles with respect to the line of sight (LOS) and demonstrate its superiority over kinematics-based guidance laws like proportional navigation (PN). The VST scheme uses PN as its basic guidance scheme and exploits the relation between the atmospheric properties, missile aerodynamic characteristics, and the optimal trajectory of the missile. The missile trajectory is shaped by controlling the instantaneous position and the speed of a virtual target which the missile pursues during the midcourse phase. In the proposed method it is shown that an appropriate value of initial position for the virtual target in 3-D, combined with optimized virtual target parameters, can significantly improve the launch envelope performance. The paper presents the formulation of the optimization problem, obtains the approximate models used to make the optimization problem more tractable, and finally presents the optimized performance of the missile in terms of launch envelope and shows significant improvement over kinematic-based guidance laws. The paper also proposes modification to the basic VST scheme. Some simulations using the full-fledged six degrees-of-freedom (6-DOF) models are also presented to validate the models and technique used.
Resumo:
Multiresolution synthetic aperture radar (SAR) image formation has been proven to be beneficial in a variety of applications such as improved imaging and target detection as well as speckle reduction. SAR signal processing traditionally carried out in the Fourier domain has inherent limitations in the context of image formation at hierarchical scales. We present a generalized approach to the formation of multiresolution SAR images using biorthogonal shift-invariant discrete wavelet transform (SIDWT) in both range and azimuth directions. Particularly in azimuth, the inherent subband decomposition property of wavelet packet transform is introduced to produce multiscale complex matched filtering without involving any approximations. This generalized approach also includes the formulation of multilook processing within the discrete wavelet transform (DWT) paradigm. The efficiency of the algorithm in parallel form of execution to generate hierarchical scale SAR images is shown. Analytical results and sample imagery of diffuse backscatter are presented to validate the method.
Resumo:
The pseudoproline residue (Psi Pro, L-2,2-dimethyl-1,3-thiazolidine-4-carboxylic acid) has been introduced into heterochiral diproline segments that have been previously shown to facilitate the formation of beta-hairpins, containing central two and three residue turns. NMR studies of the octapeptide Boc-Leu-Phe-Val-(D)Pro-Psi Pro-Leu-Phe-Val-OMe (1), Boc-Leu-Val-Val-(D)Pro-Psi Pro-Leu-Val-Val-OMe (2), and the nonapeptide sequence Boc-Leu-Phe-Val-(D)Pro-Psi Pro-(D)Ala-Leu-Phe-Val-OMe (3) established well-registered beta-hairpin structures in chloroform solution, with the almost exclusive population of the trans conformation for the peptide bond preceding the Psi Pro residue. The beta-hairpin conformation of 1 is confirmed by single crystal X-ray diffraction. Truncation of the strand length in Boc-Val-(D)Pro-Psi Pro-Leu-OMe (4) results in air increase in the population of the cis conformer, with a cis/trans ratio of 3.65. Replacement of Psi Pro in 4 by (L)Pro in 5, results in almost exclusive population of the trans form, resulting in an incipient beta-hairpin conformation, stabilized by two intramolecular hydrogen bonds. Further truncation of the sequence gives an appreciable rise in the population of cis conformers in the tripeptide piv-(D)Pro-Psi Pro-Leu-OMe (6). In the homochiral segment Piv-Pro Psi Pro-Leu-OMe (7) only the cis form is observed with the NMR evidence strongly supporting a type VIa beta-turn conformation, stabilized by a 4 -> 1 hydrogen bond between the Piv (CO) and Leu (3) NH groups. The crystal structure of the analog peptide 7a (Piv-Pro-Psi(H,CH3)Pro-Leu-NHMe) confirms the cis peptide bond geometry for the Pro-Psi(H,CH3)pro peptide bond, resulting in a type VIa beta-turn conformation.
Resumo:
Recently, a novel stress-induced phase transformation in an initial < 100 >/{100} B2-CuZr nanowire has been reported for the first time [Sutrakar and Mahapatra, Mater. Lett. 63, 1289 (2009)]. Following this, a martenisitic phase transformation in Cu-Zr nanowire was shown [Cheng et al., Appl. Phys. Lett. 95, 021911 (2009)] using the same idea (Sutrakar and Mahapatra, Mater. Lett. 63, 1289 (2009)]. The pseudoelastic recovery of the bct phase of Cu-Zr by unloading has also been shown [Cheng et al., Appl. Phys. Lett. 95, 021911 (2009)]. They also tested the epitaxial bain path [Alippi et al., Phys. Rev. Lett. 78, 3892 (1997)] and reported that the bct phase in the nanowire is metastable, whereas the bulk counterpart is unstable. This aspect is re-examined in this comment with corrected results.
Resumo:
Many types of micro-organisms inhabit iron ore deposits contributing to biogenic formation and conversion of iron oxides and associated minerals. Bacteria such as Paenibacillus polymyxa arc capable of significantly altering the surface chemical behaviour of iron ore minerals such as haematite, alumina, calcite and silica. Differing mineral surface affinities of bacterial cells and metabolic products such as proteins and polysaccharides can be utilised to induce their flotation or flocculation. Mineral-specific bioreagents such as proteins are generated when bacteria are grown in the presence of haematite, alumina, calcite and silica. Alumina-grown bacterial cells and proteins separated from such cells were found to be capable of separating alumina from haematite. Biodegradation of iron ore flotation collectors such as amines and oleates can be effectively utilised to achieve environmental control in iron ore processing mills.
Resumo:
Attention is given to the results of optimization studies with a 16-micron CO2-N2-H2 GDL employing two-dimensional wedge nozzles. The optimum value of the achievable gain reaches 12.7 percent/cm on the P(15) line for a 30:50:20 percent respective apportionment of the aforementioned gases. The corresponding optimum values for reservoir pressure and area ratio are computed as functions of reservoir temperature, and presented graphically.