939 resultados para Structural Constraints of Kind (Min, Max)
Resumo:
The search for an adequate destination to the tires without use is a problem for many countries. The use of tire rubber in concrete through the partial substitution of the small aggregate has for objective the withdrawal of this material of the environment besides serving as alternative material in places that present sand scarcity. However, to use this type of concrete in civil construction it's necessary to verify its structural behavior. The behavior of the adherence enters the bar of armor and the concrete surrounding it has decisive importance with relation to the load capacity of the structures of reinforced concrete. In this context, this work presents, argues and evaluates the results of the experimental studies for determination of the adherence tension according to pulling up assays pull-out normalized for CEB RC6 and also related in the ASTM C-234 in concrete with and without rubber residues. Armors of nominal diameter of 10,0; 12,5 and 16 mm had been used and concrete contend 10% of rubber fibres in substitution to the sand in volume.
Resumo:
Fireflies emit flashes in the green-yellow region of the spectrum for the purpose of sexual attraction. The bioluminescence color is determined by the luciferases. It is well known that the in vitro bioluminescence color of firefly luciferases can be shifted toward the red by lower pH and higher temperature; for this reason they are classified as pH-sensitive luciferases. However, the mechanism and structural origin of pH sensitivity in fireflies remains unknown. Here we report the cloning of a new luciferase from the Brazilian twilight active firefly Macrolampis sp2, which displays an unusual bimodal spectrum. The recombinant luciferase displays a sensitive spectrum with the peak at 569 nm and a shoulder in the red region. Comparison of the bioluminescence spectra of Macrolampis, Photinus and Cratomorphus firefly luciferases shows that the distinct colors are determined by the ratio between green and red emitters under luciferase influence. Comparison of Macrolampis luciferase with the highly similar North American Photinus pyralis luciferase (91%) showed few substitutions potentially involved with the higher spectral sensitivity in Macrolampis luciferase. Site-directed mutagenesis showed that the natural substitution E354N determines the appearance of the shoulder in the red region of Macrolampis luciferase bioluminescence spectrum, helping to identify important interactions and residues involved in the pH-sensing mechanism in firefly luciferases. © 2005 American Society for Photobiology.
Resumo:
A series of segmented poly(urethane-urea)s containing 1,3,5 triazine in the hard block and hexamethylene spacers in the soft block was prepared. The hard to soft segment ratio was varied systematically, to afford a series of polymers in which the chromophore concentration varied from 4.2% to 18.1%. Although triazine emission is located in the UV region, the films with higher content of the chromophore emitted a visible blue light (425 nm) when excited at the very red-edge of the absorption band. The photophysical properties of the materials were strongly dependent on the relative amount of triazine moieties along the main chain. Isolated moieties emit in copolymers with small amount of triazine groups, indicating that even though in solid state, these moieties tend to be apart. Two photophysical consequences were observed when the amount of triazine increases: there is some energy transfer process involving isolated moieties with consequent decrease of the lifetime and an additional red-edge emission attributed to aggregated lumophores. The mono-exponential decay observed for the isolated form is substituted by a bi-exponential decay of the aggregated species. The materials were not strong emitters, but since the N-containing triazine moieties are good electron transport groups, the polymers have potential application as electron transport enhancers in various applications. © 2006 Elsevier B.V. All rights reserved.
Resumo:
In this work, humic substances were extracted from water samples collected monthly from the Negro River basin in the Amazon state (Brazil) to study their properties in the Amazonian environment and interactions with the mercury ion considering the influence of seasonalness in this formation. The C/H, C/N and C/O atomic ratio parameters, functional groups, concentration of semiquinone-type free radicals, pH, pluviometric and fluviometric indices, and mercury concentrations were interpreted using hierarchical cluster analysis (HCA) and principal component analysis (PCA). The statistical analyses showed that when the pluviometric index was greater and the fluviometric index was smaller, the degree of humification of aquatic substances was greater. The following decreasing order of the degree of humification of the AHS collected monthly was established: Nov/02 to Feb/03 > Mar/02 to May/02 > Jun/02 to Oct/02. The greatest concentrations of mercury were detected in more humidified samples. These results suggest that due to inter and/or intra-molecular rearrangements, the degree of humification of aquatic humic substances is related to its affinity for Hg(II) ions. ©2007 Sociedade Brasileira de Química.
Resumo:
This investigation compares the peritrophic membrane (PM) morphology along the midgut of susceptible (SL) and resistant (RL) Anticarsia gemmatalis larvae to the AgMNPV. The PM increased the thickness from the anterior to the posterior midgut region in both insects strain; however, the intensity of FITC-WGA reaction of the PM in the RL were greater than in SL. The PM in RL was ultrastructurally constituted by several layers of fibrous/vesicular materials in comparison with the few ones in SL. Our results showed that the structure of PM in the RL could be one of the resistance barriers to AgMNPV. © 2007.
Resumo:
This paper analyses the static and dynamic behavior of the railroad track model in laboratory. Measurements of stresses and strains on a large-scale railroad track apparatus were studied. The model includes: compacted soil, representing the final layers of platform, ballast layer, and ties (steel, wooden, and pre-stressed concrete). The soil and soil ballast interface were instrumented with pneumatic stress gauge. Settlement measurement device were positioned at the same levels as the load cells. Loads were applied by hydraulic actuators, statically and dynamically. After the prescribed number of load cycles, in pre-determined intervals, stresses and strains were measured. Observations indicate that stress and strain distributions, transmitted by wooden or steel ties, behave similarly. A more favorable behavior was observed with pre-stressed concrete mono block ties. Non-linear response was observed after a threshold numbers of cycles were surpassed, showing that the strain modulus increases with the numbers of cycles. © 2009 IOS Press.
Resumo:
Background: The functional and structural characterisation of enzymes that belong to microbial metabolic pathways is very important for structure-based drug design. The main interest in studying shikimate pathway enzymes involves the fact that they are essential for bacteria but do not occur in humans, making them selective targets for design of drugs that do not directly impact humans.Description: The ShiKimate Pathway DataBase (SKPDB) is a relational database applied to the study of shikimate pathway enzymes in microorganisms and plants. The current database is updated regularly with the addition of new data; there are currently 8902 enzymes of the shikimate pathway from different sources. The database contains extensive information on each enzyme, including detailed descriptions about sequence, references, and structural and functional studies. All files (primary sequence, atomic coordinates and quality scores) are available for downloading. The modeled structures can be viewed using the Jmol program.Conclusions: The SKPDB provides a large number of structural models to be used in docking simulations, virtual screening initiatives and drug design. It is freely accessible at http://lsbzix.rc.unesp.br/skpdb/. © 2010 Arcuri et al; licensee BioMed Central Ltd.
Resumo:
Background. About 130 million people are infected with the hepatitis C virus (HCV) worldwide, but effective treatment options are not yet available. One of the most promising targets for antiviral therapy is nonstructural protein 3 (NS3). To identify possible changes in the structure of NS3 associated with virological sustained response or non-response of patients, a model was constructed for each helicase NS3 protein coding sequence. From this, the goal was to verify the interaction between helicases variants and their ligands. Findings. Evidence was found that the NS3 helicase portion of non-responder patients contained substitutions in its ATP and RNA binding sites. K210E substitution can cause an imbalance in the distribution of loads, leading to a decrease in the number of ligations between the essential amino acids required for the hydrolysis of ATP. W501R substitution causes an imbalance in the distribution of loads, leading and forcing the RNA to interact with the amino acid Thr269, but not preventing binding of ribavirin inhibitor. Conclusions. Useful information is provided on the genetic profiling of the HCV genotype 3, specifically the coding region of the NS3 protein, improving our understanding of the viral genome and the regions of its protein catalytic site. © 2010 Rahal et al; licensee BioMed Central Ltd.
Resumo:
This paper offers the physical and chemical characterization of a new dextran produced by Leuconostoc mesenteroides FT045B. The chemical structure was determined by Fourier Transform Infrared spectroscopy and 1H Nuclear Magnetic Resonance spectroscopy. The dextran was hydrolyzed by endodextranase; the products were analyzed using thin layer chromatography and compared with those of commercial B-512F dextran. The number-average molecular weight and degree of polymerization of the FT045B dextran were determined by the measurement of the reducing value using the copper bicinchoninate method and the measurement of total carbohydrate using the phenol-sulfuric acid method. The data revealed that the structure of the dextran synthesized by FT045B dextran sucrase is composed of d-glucose residues, containing 97.9% α-(1,6) linkages in the main chains and 2.1% α-(1,3) branch linkages compared with the commercial B-512F dextran, which has 95% α-(1,6) linkages in the main chains and 5% α-(1,3) branch linkages. © 2012 Elsevier Ltd. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Includes bibliography
Resumo:
Background: Diminishing supplies of fossil fuels and oil spills are rousing to explore the alternative sources of energy that can be produced from non-food/feed-based substrates. Due to its abundance, sugarcane bagasse (SB) could be a model substrate for the second-generation biofuel cellulosic ethanol. However, the efficient bioconversion of SB remains a challenge for the commercial production of cellulosic ethanol. We hypothesized that oxalic-acid-mediated thermochemical pretreatment (OAFEX) would overcome the native recalcitrance of SB by enhancing the cellulase amenability toward the embedded cellulosic microfibrils. Results: OAFEX treatment revealed the solubilization of hemicellulose releasing sugars (12.56 g/l xylose and 1.85 g/l glucose), leaving cellulignin in an accessible form for enzymatic hydrolysis. The highest hydrolytic efficiency (66.51%) of cellulignin was achieved by enzymatic hydrolysis (Celluclast 1.5 L and Novozym 188). The ultrastructure characterization of SB using scanning electron microscopy (SEM), atomic force microscopy (AFM), Raman spectroscopy, Fourier transform-near infrared spectroscopy (FT-NIR), Fourier transform infrared spectroscopy (FTIR), and X-ray diffraction (XRD) revealed structural differences before and after OAFEX treatment with enzymatic hydrolysis. Furthermore, fermentation mediated by C. shehatae UFMG HM52.2 and S. cerevisiae 174 showed fuel ethanol production from detoxified acid (3.2 g/l, yield 0.353 g/g; 0.52 g/l, yield, 0.246 g/g) and enzymatic hydrolysates (4.83 g/l, yield, 0.28 g/g; 6.6 g/l, yield 0.46 g/g). Conclusions: OAFEX treatment revealed marked hemicellulose degradation, improving the cellulases ability to access the cellulignin and release fermentable sugars from the pretreated substrate. The ultrastructure of SB after OAFEX and enzymatic hydrolysis of cellulignin established thorough insights at the molecular level. © 2013 Chandel et al; licensee BioMed Central Ltd.
Resumo:
Starch is arguably one of the most actively investigated biopolymer in the world. In this study, the native (untreated) cassava starch granules (Manihot esculenta, Crantz) were hydrolyzed by standard hydrochloric acid solution at different temperatures (30 °C and 50 °C) and the hydrolytic transformations were investigated by the following techniques: simultaneous thermogravimetry-differential thermal analysis (TG-DTA), differential scanning calorimetry (DSC), as well as non-contact atomic force microscopy (NC-AFM), X-ray diffraction (XRD) powder patterns, and rapid viscoamylographic analysis (RVA). After the treatment with hydrochloric acid at different temperatures, the thermal stability, a gradual loss of pasting properties (viscosity), alterations in the gelatinization enthalpy (ΔHgel), were observed. The use of NC-AFM and XRD allowed the observation of the surface morphology and topography of the starch granules and changes in crystallinity of the granules, respectively. © 2012 Elsevier B.V. All rights reserved.
Resumo:
Includes bibliography
Resumo:
Papillomaviruses (PVs) infect a wide range of animal species and show great genetic diversity. To date, excluding equine sarcoids, only three species of PVs were identified associated with lesions in horses: Equus caballus papillomavirus 1 (EcPV1-cutaneous), EcPV2 (genital) and EcPV3 (aural plaques). In this study, we identified a novel equine PV from aural plaques, which we designated EcPV4. Cutaneous samples from horses with lesions that were microscopically diagnosed as aural plaques were subjected to DNA extraction, amplification and sequencing. Rolling circle amplification and inverse PCR with specific primers confirmed the presence of an approximately 8. kb circular genome. The full-length EcPV4 L1 major capsid protein sequence has 1488 nucleotides (495 amino acids). EcPV4 had a sequence identity of only 53.3%, 60.2% and 51.7% when compared with the published sequences for EcPV1, EcPV2 and EcPV3, respectively. A Bayesian phylogenetic analysis indicated that EcPV4 clusters with EcPV2, but not with EcPV1 and EcPV3. Using the current PV classification system that is based on the nucleotide sequence of L1, we could not define the genus of the newly identified virus. Therefore, a structural analysis of the L1 protein was carried out to aid in this classification because EcPV4 cause lesion similar to the lesion caused by EcPV3. A comparison of the superficial loops demonstrated a distinct amino acid conservation pattern between EcPV4/EcPV2 and EcPV4/EcPV3. These results demonstrate the presence of a new equine PV species and that structural studies could be useful in the classification of PVs. © 2012 Elsevier B.V.