941 resultados para Stochastic Frontier Production Function Analysis
Resumo:
We have employed an inverse engineering strategy based on quantitative proteome analysis to identify changes in intracellular protein abundance that correlate with increased specific recombinant monoclonal antibody production (qMab) by engineered murine myeloma (NSO) cells. Four homogeneous NSO cell lines differing in qMab were isolated from a pool of primary transfectants. The proteome of each stably transfected cell line was analyzed at mid-exponential growth phase by two-dimensional gel electrophoresis (2D-PAGE) and individual protein spot volume data derived from digitized gel images were compared statistically. To identify changes in protein abundance associated with qMab clatasets were screened for proteins that exhibited either a linear correlation with cell line qMab or a conserved change in abundance specific only to the cell line with highest qMab. Several proteins with altered abundance were identified by mass spectrometry. Proteins exhibiting a significant increase in abundance with increasing qMab included molecular chaperones known to interact directly with nascent immunoglobulins during their folding and assembly (e.g., BiP, endoplasmin, protein disulfide isomerase). 2D-PAGE analysis showed that in all cell lines Mab light chain was more abundant than heavy chain, indicating that this is a likely prerequisite for efficient Mab production. In summary, these data reveal both the adaptive responses and molecular mechanisms enabling mammalian cells in culture to achieve high-level recombinant monoclonal antibody production. (C) 2004 Wiley Periodicals, Inc.
Resumo:
A generic method for the estimation of parameters for Stochastic Ordinary Differential Equations (SODEs) is introduced and developed. This algorithm, called the GePERs method, utilises a genetic optimisation algorithm to minimise a stochastic objective function based on the Kolmogorov-Smirnov statistic. Numerical simulations are utilised to form the KS statistic. Further, the examination of some of the factors that improve the precision of the estimates is conducted. This method is used to estimate parameters of diffusion equations and jump-diffusion equations. It is also applied to the problem of model selection for the Queensland electricity market. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
The paradigm that mangroves are critical for sustaining production in coastal fisheries is widely accepted, but empirical evidence has been tenuous. This study showed that links between mangrove extent and coastal fisheries production could be detected for some species at a broad regional scale (1000s of kilometres) on the east coast of Queensland, Australia. The relationships between catch-per-unit-effort for different commercially caught species in four fisheries (trawl, line, net and pot fisheries) and mangrove characteristics, estimated from Landsat images were examined using multiple regression analyses. The species were categorised into three groups based on information on their life history characteristics, namely mangrove-related species (banana prawns Penaeus merguiensis, mud crabs Scylla serrata and barramundi Lates calcarifer), estuarine species (tiger prawns Penaeus esculentus and Penaeus semisulcatus, blue swimmer crabs Portunus pelagicus and blue threadfin Eleutheronema tetradactylum) and offshore species (coral trout Plectropomus spp.). For the mangrove-related species, mangrove characteristics such as area and perimeter accounted for most of the variation in the model; for the non-mangrove estuarine species, latitude was the dominant parameter but some mangrove characteristics (e.g. mangrove perimeter) also made significant contributions to the models. In contrast, for the offshore species, latitude was the dominant variable, with no contribution from mangrove characteristics. This study also identified that finer scale spatial data for the fisheries, to enable catch information to be attributed to a particular catchment, would help to improve our understanding of relationships between mangroves and fisheries production. (C) 2005 Elsevier B.V. All rights reserved.
Resumo:
The present study employed electropalatography (EPG) and a nonspeech measure of lingual function to examine, in detail, the articulatory production deficits of two individuals with Parkinson disease (PD) and hypokinetic dysarthria. Participants read 10 repetitions of CV words contained within the carrier phrase I saw a _ today while wearing an EPG artificial palate. Target consonants included the alveolar stop /t/, lateral approximant /l/, and the alveolar fricative /s/ in the /a/ vowel environment. The results of the two participants were compared to an age-matched control group. Examination of the perceptual features of articulatory production, lingual strength, fine force control and endurance, tongue-palate contact patterns, and segment durations were conducted. Results of the study revealed quite different articulatory deficits in the two participants. Specifically, the articulation of Participant One (P1) was characterized by a fast rate of speech, undershooting of articulatory targets, and reduced duration of consonant closures. In contrast, Participant Two (P2) demonstrated tongue-palate contact patterns indicative of impaired lingual control in the presence of both normal and increased articulatory segment durations. Potential reasons for the differing articulatory deficits were hypothesized. The current study demonstrated that assessment with EPG identified potential causes of consonant imprecision in two individuals with hypokinetic dysarthria. Directions for speech pathology intervention, salient from the results of the study, were also noted.
Resumo:
Primary objective: To investigate jaw movements in children following traumatic brain injury (TBI) during speech using electromagnetic articulography (EMA). Methods and procedures: Jaw movements of two non-dysarthric children ( aged 12.75 and 13.08 years) who had sustained a TBI were recorded using the AG-100 EMA system (Carstens Medizineletronik) during word-initial consonant productions. Mean quantitative kinematic parameters and coefficient of variation ( variability) values were calculated and individually compared to the mean values obtained by a group of six control children ( mean age 12.57 years, SD 1.52). Main outcomes and results: The two children with TBI exhibited word-initial consonant jaw movement durations that were comparable to the control children, with sub-clinical reductions in speed being offset by reduced distances. Differences were observed between the two children in jaw kinematic variability, with one child exhibiting increased variability, while the other child demonstrated reduced or comparable variability compared to the control group. Conclusions: Possible sub-clinical impairments of jaw movement for speech were exhibited by two children who had sustained a TBI, providing insight into the consequences of TBI on speech motor control development.
Resumo:
Primary objective: To investigate the articulatory function of a group of children with traumatic brain injury (TBI), using both perceptual and instrumental techniques. Research design: The performance of 24 children with TBI was assessed on a battery of perceptual (Frenchay Dysarthria Assessment, Assessment of Intelligibility of Dysarthric Speech and speech sample analysis) and instrumental ( lip and tongue pressure transduction systems) assessments and compared with that of 24 non-neurologically impaired children matched for age and sex. Main outcomes: Perceptual assessment identified consonant and vowel imprecision, increased length of phonemes and overall reduction in speech intelligibility, while instrumental assessment revealed significant impairment in lip and tongue function in the TBI group, with rate and pressure in repetitive lip and tongue tasks particularly impaired. Significant negative correlations were identified between the degree of deviance of perceptual articulatory features and decreased function on many non-speech measures of lip function, as well as maximum tongue pressure and fine force tongue control at 20% of maximum tongue pressure. Additionally, sub-clinical articulatory deficits were identified in the children with TBI who were non-dysarthric. Conclusion: The results of the instrumental assessment of lip and tongue function support the finding of substantial articulatory dysfunction in this group of children following TBI. Hence, remediation of articulatory function should be a therapeutic priority in these children.
Resumo:
Background: Automated measurement of LV function could extend the clinical utility of echo by less expert readers. We sought to define normal ranges of global 2D strain (2DS) and strain-rate (SR) in an international, multicenter study of healthy subjects, and to assess the determinants of variation. Methods: SR and 2DS were measured in 18 myocardial segts in both apical and short axis views of 227 normal subjects (38% men, 48±14y) with no cardiac history, risk factors or drug therapy. The association of age and resting hemodynamics with global strain indices was sought using multiple regression. Differences in variance were expressed as F values. Results: Baseline SBP was 127±18 mmHg, pulse was 76±13/min and ejection fraction 50±20%. Although global longitudinal strain was influenced by endsystolic volume (F=4.2, p