999 resultados para Split-Brain
Resumo:
The lipid and fatty acid composition of rat brain was studied during its development both in vivo and in an aggregating cell culture system. Although the amount of lipid present in the cultures was very low, the increase in glycolipid content corresponded closely to the period of intense myelin formation. Very long chain fatty acids (hydroxylated and unsubstituted) were present in 41-day cultures. In comparison to the in vivo situation, myelination was delayed in vitro and, after 40 days in culture, cholesterol esters were 5-fold higher than in vivo, indicating that demyelination was occurring.
Resumo:
In vivo fetal magnetic resonance imaging provides aunique approach for the study of early human braindevelopment [1]. In utero cerebral morphometry couldpotentially be used as a marker of the cerebralmaturation and help to distinguish between normal andabnormal development in ambiguous situations. However,this quantitative approach is a major challenge becauseof the movement of the fetus inside the amniotic cavity,the poor spatial resolution provided by very fast MRIsequences and the partial volume effect. Extensiveefforts are made to deal with the reconstruction ofhigh-resolution 3D fetal volumes based on severalacquisitions with lower resolution [2,3,4]. Frameworkswere developed for the segmentation of specific regionsof the fetal brain such as posterior fossa, brainstem orgerminal matrix [5,6], or for the entire brain tissue[7,8], applying the Expectation-Maximization MarkovRandom Field (EM-MRF) framework. However, many of theseprevious works focused on the young fetus (i.e. before 24weeks) and use anatomical atlas priors to segment thedifferent tissue or regions. As most of the gyraldevelopment takes place after the 24th week, acomprehensive and clinically meaningful study of thefetal brain should not dismiss the third trimester ofgestation. To cope with the rapidly changing appearanceof the developing brain, some authors proposed a dynamicatlas [8]. To our opinion, this approach however faces arisk of circularity: each brain will be analyzed /deformed using the template of its biological age,potentially biasing the effective developmental delay.Here, we expand our previous work [9] to proposepost-processing pipeline without prior that allow acomprehensive set of morphometric measurement devoted toclinical application. Data set & Methods: Prenatal MRimaging was performed with a 1-T system (GE MedicalSystems, Milwaukee) using single shot fast spin echo(ssFSE) sequences (TR 7000 ms, TE 180 ms, FOV 40 x 40 cm,slice thickness 5.4mm, in plane spatial resolution1.09mm). For each fetus, 6 axial volumes shifted by 1 mmwere acquired under motherâeuro?s sedation (about 1min pervolume). First, each volume is segmentedsemi-automatically using region-growing algorithms toextract fetal brain from surrounding maternal tissues.Inhomogeneity intensity correction [10] and linearintensity normalization are then performed. Brain tissues(CSF, GM and WM) are then segmented based on thelow-resolution volumes as presented in [9]. Ahigh-resolution image with isotropic voxel size of 1.09mm is created as proposed in [2] and using B-splines forthe scattered data interpolation [11]. Basal gangliasegmentation is performed using a levet setimplementation on the high-resolution volume [12]. Theresulting white matter image is then binarized and givenas an input in FreeSurfer software(http://surfer.nmr.mgh.harvard.edu) to providetopologically accurate three-dimensional reconstructionsof the fetal brain according to the local intensitygradient. References: [1] Guibaud, Prenatal Diagnosis29(4) (2009). [2] Rousseau, Acad. Rad. 13(9), 2006. [3]Jiang, IEEE TMI 2007. [4] Warfield IADB, MICCAI 2009. [5]Claude, IEEE Trans. Bio. Eng. 51(4) 2004. [6] Habas,MICCAI 2008. [7] Bertelsen, ISMRM 2009. [8] Habas,Neuroimage 53(2) 2010. [9] Bach Cuadra, IADB, MICCAI2009. [10] Styner, IEEE TMI 19(39 (2000). [11] Lee, IEEETrans. Visual. And Comp. Graph. 3(3), 1997. [12] BachCuadra, ISMRM 2010.
Resumo:
Electrical Impedance Tomography (EIT) is an imaging method which enables a volume conductivity map of a subject to be produced from multiple impedance measurements. It has the potential to become a portable non-invasive imaging technique of particular use in imaging brain function. Accurate numerical forward models may be used to improve image reconstruction but, until now, have employed an assumption of isotropic tissue conductivity. This may be expected to introduce inaccuracy, as body tissues, especially those such as white matter and the skull in head imaging, are highly anisotropic. The purpose of this study was, for the first time, to develop a method for incorporating anisotropy in a forward numerical model for EIT of the head and assess the resulting improvement in image quality in the case of linear reconstruction of one example of the human head. A realistic Finite Element Model (FEM) of an adult human head with segments for the scalp, skull, CSF, and brain was produced from a structural MRI. Anisotropy of the brain was estimated from a diffusion tensor-MRI of the same subject and anisotropy of the skull was approximated from the structural information. A method for incorporation of anisotropy in the forward model and its use in image reconstruction was produced. The improvement in reconstructed image quality was assessed in computer simulation by producing forward data, and then linear reconstruction using a sensitivity matrix approach. The mean boundary data difference between anisotropic and isotropic forward models for a reference conductivity was 50%. Use of the correct anisotropic FEM in image reconstruction, as opposed to an isotropic one, corrected an error of 24 mm in imaging a 10% conductivity decrease located in the hippocampus, improved localisation for conductivity changes deep in the brain and due to epilepsy by 4-17 mm, and, overall, led to a substantial improvement on image quality. This suggests that incorporation of anisotropy in numerical models used for image reconstruction is likely to improve EIT image quality.
Resumo:
Aims: The psychometric properties of the EORTC QLQ-BN20, a brain cancer-specific HRQOL questionnaire, have been previously determined in an English-speaking sample of patients. This study examined the validity and reliability of the questionnaire in a multi-national, multi-lingual study. Methods: QLQ-BN20 data were selected from two completed phase III EORTC/NCIC clinical trials in brain cancer (N=891), including 12 languages. Experimental treatments were surgery followed by radiotherapy (RT) and adjuvant PCV chemotherapy or surgery followed by concomitant RT plus temozolomide (TMZ) chemotherapy and adjuvant TMZ chemotherapy. Standard treatment consisted of surgery and postoperative RT alone. The psychometrics of the QLQ-BN20 were examined by means of multi-trait scaling analyses, reliability estimation, known groups validity testing, and responsiveness analysis. Results: All QLQ-BN20 items correlated more strongly with their own scale (r>0.70) than with other QLQ-BN20 scales. Internal consistency reliability coefficients were high (all alpha0.70). Known-groups comparisons yielded positive results, with the QLQ-BN20 distinguishing between patients with differing levels of performance status and mental functioning. Responsiveness of the questionnaire to changes over time was acceptable. Conclusion: The QLQ-BN20 demonstrates adequate psychometric properties and can be recommended for use in conjunction with the QLQ-C30 in assessing the HRQOL of brain cancer patients in international studies.
Resumo:
Résumé La levodopa (LD) est le traitement antiparkinsonien le plus efficace et le plus répandu. Son effet est composé d'une réponse de courte (quelques heures) et de longue durée (jours à semaines). La persistance de cette dernière dans les phases avancées de la maladie de Parkinson est controversée, et sa mesure directe n'a jamais été faite en raison des risques liés à un sevrage complet de LD. La stimulation du noyau sous-thalamique est un nouveau traitement neurochirurgical de la maladie de Parkinson, indiqué dans les formes avancées, qui permet l'arrêt complet du traitement médicamenteux chez certains patients. Nous avons étudié 30 patients qui ont bénéficié d'une telle stimulation, et les avons évalués avant l'intervention sans médicaments, et à 6 mois postopératoires, sans médicaments et sans stimulation. Chez 19 patients, la médication a pu être complètement arrêtée, alors qu'elle a dû être réintroduite chez les 11 patients restants. Au cours des 6 mois qui ont suivi l'intervention, le parkinsonisme s'est aggravé de façon significative dans le groupe sans LD, et non dans le groupe avec LD. Cette différence d'évolution s'explique par la perte de l'effet à long terme de la LD dans le groupe chez qui ce médicament a pu être arrêté. En comparant cette aggravation à la magnitude de l'effet à court terme, la réponse de longue durée correspond environ à 80 pourcent de la réponse de courte durée, et elle lui est inversement corrélée. Parmi les signes cardinaux de la maladie, la réponse de longue durée affecte surtout la bradycinésie et la rigidité, mais pas le tremblement ni la composante axiale. La comparaison du parkinsonisme avec traitement (stimulation et LD si applicable) ne montre aucune différence d'évolution entre les 2 groupes, suggérant que la stimulation compense tant la réponse de courte que de longue durée. Notre travail montre que la réponse de longue durée à la LD demeure significative chez les patients parkinsoniens après plus de 15 ans d'évolution, et suggère que la stimulation du noyau sous-thalamique compense les réponses de courte et de longue durée. Abstract Background: Long duration response to levodopa is supposed to decrease with Parkinson's disease (PD) progression, but direct observation of this response in advanced PD has never been performed. Objective: To study the long duration response to levodopa in advanced PD patients treated with subthalamic deep-brain stimulation. Design and settings: We studied 30 consecutive PD patients who underwent subthalamic deep-brain stimulation. One group had no antiparkinsonian treatment since surgery (no levodopa), while medical treatment had to be reinitiated in the other group (levodopa). Main outcome measures: motor Unified Parkinson's Disease Rating Scale (UPDRS). Results: In comparison with preoperative assessment, evaluation six months postoperatively with stimulation turned off for three hours found a worsening of the motor part of UPDRS in the no-levodopa group. This worsening being absent in the levodopa group, it most probably reflected the loss of the long duration response to levodopa in the no-levodopa group. Stimulation turned on, postoperative motor UPDRS in both groups were similar to preoperative on medication scores, suggesting that subthalamic deep-brain stimulation compensated for both the short and long duration responses to levodopa. Conclusions: Our results suggest that the long duration response to levodopa remains significant even in advanced PD, and that subthalamic deep-brain stimulation compensates for both the short and the long duration resposes to levodopa.
Resumo:
Music is a highly complex and versatile stimulus for the brain that engages many temporal, frontal, parietal, cerebellar, and subcortical areas involved in auditory, cognitive, emotional, and motor processing. Regular musical activities have been shown to effectively enhance the structure and function of many brain areas, making music a potential tool also in neurological rehabilitation. In our previous randomized controlled study, we found that listening to music on a daily basis can improve cognitive recovery and improve mood after an acute middle cerebral artery stroke. Extending this study, a voxel-based morphometry (VBM) analysis utilizing cost function masking was performed on the acute and 6-month post-stroke stage structural magnetic resonance imaging data of the patients (n = 49) who either listened to their favorite music [music group (MG), n = 16] or verbal material [audio book group (ABG), n = 18] or did not receive any listening material [control group (CG), n = 15] during the 6-month recovery period. Although all groups showed significant gray matter volume (GMV) increases from the acute to the 6-month stage, there was a specific network of frontal areas [left and right superior frontal gyrus (SFG), right medial SFG] and limbic areas [left ventral/subgenual anterior cingulate cortex (SACC) and right ventral striatum (VS)] in patients with left hemisphere damage in which the GMV increases were larger in the MG than in the ABG and in the CG. Moreover, the GM reorganization in the frontal areas correlated with enhanced recovery of verbal memory, focused attention, and language skills, whereas the GM reorganization in the SACC correlated with reduced negative mood. This study adds on previous results, showing that music listening after stroke not only enhances behavioral recovery, but also induces fine-grained neuroanatomical changes in the recovering brain.
Resumo:
Triiodothyronine (30 nM) added to serum-free cultures of mechanically dissociated re-aggregating fetal (15-16 days gestation) rat brain cells greatly increased the enzymatic activity of choline acetyltransferase and acetylcholinesterase throughout the entire culture period (33 days), and markedly accelerated the developmental rise of glutamic acid decarboxylase specific activity. The enhancement of choline acetyltransferase and acetylcholinesterase specific activities in the presence of triiodothyronine was even more pronouned in cultures of telencephalic cells. If triiodothyronine treatment was restricted to the first 17 culture days, the level of choline acetyltransferase specific activity at day 33 was 84% of that in chronically treated cultures and 270% of that in cultures receiving triiodothyronine between days 17 and 33, indicating that relatively undifferentiated cells were more responsive to the hormone. Triiodothyronine had no apparent effect on the incorporation of [3H]thymidine at day 5 or on the total DNA content of cultures, suggesting that cellular differentiation, rather than proliferation was affected by the hormone. Our findings in vitro are in good agreement with many observations in vivo, suggesting that rotation-mediated aggregating cell cultures of fetal rat brain provide a useful model to study thyroid hormone action in the developing brain.
Resumo:
We previously showed in a 3D rat brain cell in vitro model for glutaric aciduria type-I that repeated application of 1mM 3-hydroxy-glutarate (3-OHGA) caused ammonium accumulation, morphologic alterations and induction of non-apoptotic cell death in developing brain cells. Here, we performed a dose-response study with lower concentrations of 3- OHGA.We exposed our cultures to 0.1, 0.33 and 1mM 3-OHGA every 12h over three days at two developmental stages (DIV5-8 and DIV11-14). Ammonium accumulation was observed at both stages starting from 0.1mM 3-OHGA, in parallel with a glutamine decrease. Morphological changes started at 0.33mM with loss of MBP expression and loss of astrocytic processes. Neurons were not substantially affected. At DIV8, release of LDH in the medium and cellular TUNEL staining increased from 0.1mM and 0.33mM 3-OHGA exposure, respectively. No increase in activated caspase-3 was observed. We confirmed ammonium accumulation and non-apoptotic cell death of brain cells in our in vitro model at lower 3-OHGA concentrations thus strongly suggesting that the observed effects are likely to take place in the brain of affected patients. The concomitant glutamine decrease suggests a defect in the astrocyte ammonium buffering system. Ammonium accumulation might be the cause of non-apoptotic cell death.
Resumo:
Low energy x-ray fluorescence (LEXRF) detection was optimized for imaging cerebral glucose metabolism by mapping the fluorine LEXRF signal of 19 F in 19 FDG, trapped as intracellular 19 F-deoxyglucose-6-phosphate ( 19 FDG-6P) at 1μm spatial resolution from 3μm thick brain slices. 19 FDG metabolism was evaluated in brain structures closely resembling the general cerebral cytoarchitecture following formalin fixation of brain slices and their inclusion in an epon matrix. 2-dimensional distribution maps of 19 FDG-6P were placed in a cytoarchitectural and morphological context by simultaneous LEXRF mapping of N and O, and scanning transmission x-ray (STXM) imaging. A disproportionately high uptake and metabolism of glucose was found in neuropil relative to intracellular domains of the cell body of hypothalamic neurons, showing directly that neurons, like glial cells, also metabolize glucose. As 19 F-deoxyglucose-6P is structurally identical to 18 F-deoxyglucose-6P, LEXRF of subcellular 19 F provides a link to in vivo 18 FDG PET, forming a novel basis for understanding the physiological mechanisms underlying the 18 FDG PET image, and the contribution of neurons and glia to the PET signal.
Resumo:
Ochratoxin A (OTA), a fungal contaminant of basic food commodities, is known to be highly cytotoxic, but the pathways underlying adverse effects at subcytotoxic concentrations remain to be elucidated. Recent reports indicate that OTA affects cell cycle regulation. Therefore, 3D brain cell cultures were used to study OTA effects on mitotically active neural stem/progenitor cells, comparing highly differentiated cultures with their immature counterparts. Changes in the rate of DNA synthesis were related to early changes in the mRNA expression of neural stem/progenitor cell markers. OTA at 10nM, a concentration below the cytotoxic level, was ineffective in immature cultures, whereas in mature cultures it significantly decreased the rate of DNA synthesis together with the mRNA expression of key transcriptional regulators such as Sox2, Mash1, Hes5, and Gli1; the cell cycle activator cyclin D2; the phenotypic markers nestin, doublecortin, and PDGFRα. These effects were largely prevented by Sonic hedgehog (Shh) peptide (500ngml(-1)) administration, indicating that OTA impaired the Shh pathway and the Sox2 regulatory transcription factor critical for stem cell self-renewal. Similar adverse effects of OTA in vivo might perturb the regulation of stem cell proliferation in the adult brain and in other organs exhibiting homeostatic and/or regenerative cell proliferation.
Resumo:
OBJECTIVE: To investigate the effects of neonatal hypoglycemia on physical growth and neurocognitive function.Study design: A systematic detection of hypoglycemia (<2.6 mmol/L or 47 mg/dL) was carried out in 85 small-for-gestational-age preterm neonates. Prospective serial evaluations of physical growth and psychomotor development were performed. Retrospectively, infants were grouped according to their glycemic status. RESULTS: The incidence of hypoglycemia was 72.9%. Infants with repeated episodes of hypoglycemia had significantly reduced head circumferences and lower scores in specific psychometric tests at 3.5 years of age. Hypoglycemia also caused reduced head circumferences at 18 months and lower psychometric scores at 5 years of age. Infants with moderate recurrent hypoglycemia had lower scores at 3.5 and 5 years of age compared with the group of infants who had 1 single severe hypoglycemic episode. CONCLUSION: Recurrent episodes of hypoglycemia were strongly correlated with persistent neurodevelopmental and physical growth deficits until 5 years of age. Recurrent hypoglycemia also was a more predictable factor for long-term effects than the severity of a single hypoglycemic episode. Therefore repetitive blood glucose monitoring and rapid treatment even for mild hypoglycemia are recommended for small-for-gestational-age infants in the neonatal period.
Resumo:
Islet-brain 1 [IB1; also termed c-Jun N-terminal kinase (JNK)-interacting protein 1 (JIP-1] is involved in the apoptotic signaling cascade of JNK and functions as a scaffold protein. It organizes several MAP kinases and the microtubule-transport motor protein kinesin and relates to other signal-transducing molecules such as the amyloid precursor protein. Here we have identified IB1/JIP-1 using different antibodies that reacted with either a monomeric or a dimeric form of IB1/JIP-1. By immunoelectron microscopy, differences in the subcellular localization were observed. The monomeric form was found in the cytoplasmic compartment and is associated with the cytoskeleton and with membranes, whereas the dimeric form was found in addition in nuclei. After treatment of mouse brain homogenates with alkaline phosphatase, the dimeric form disappeared and the monomeric form decreased its molecular weight, suggesting that an IB1/JIP-1 dimerization is phosphorylation dependent and that IB1 exists in several phospho- forms. N-methyl-D-aspartate receptor activation induced a dephosphorylation of IB1/JIP-1 in primary cultures of cortical neurons and reduced homodimerization. In conclusion, these data suggest that IB1/JIP-1 monomers and dimers may differ in compartmental localization and thus function as a scaffold protein of the JNK signaling cascade in the cytoplasm or as a transcription factor in nuclei.
Resumo:
BACKGROUND: Data regarding immunomodulatory effects of parenteral n-3 fatty acids in sepsis are conflicting. In this study, the effect of administration of parenteral n-3 fatty acids on markers of brain injury, incidence of sepsis-associated delirium, and inflammatory mediators in septic patients was investigated. METHODS: Fifty patients with sepsis were randomized to receive either 2 ml/kg/day of a lipid emulsion containing highly refined fish oil (equivalent to n-3 fatty acids 0.12 mg/kg/day) during 7 days after admission to the intensive care unit or standard treatment. Markers of brain injury and inflammatory mediators were measured on days 1, 2, 3 and 7. Assessment for sepsis-associated delirium was performed daily. The primary outcome was the difference in S-100β from baseline to peak level between both the intervention and the control group, compared by t-test. Changes of all markers over time were explored in both groups, fitting a generalized estimating equations model. RESULTS: Mean difference in change of S-100β from baseline to peak level was 0.34 (95% CI: -0.18-0.85) between the intervention and control group, respectively (P = 0.19). We found no difference in plasma levels of S-100β, neuron-specific enolase, interleukin (IL)-6, IL-8, IL-10, and C-reactive protein between groups over time. Incidence of sepsis-associated delirium was 75% in the intervention and 71% in the control groups (risk difference 4%, 95% CI -24-31%, P = 0.796). CONCLUSION: Administration of n-3 fatty acids did not affect markers of brain injury, incidence of sepsis-associated delirium, and inflammatory mediators in septic patients.