994 resultados para Spin-orbit coupling
Resumo:
The coupling of mesoscopic strength distribution and stress fluctuation on damage evolution and rupture are examined. The numerical simulations show that there is only weak stress fluctuation at the initial damage stage when the mean field approximation is in effect. As the damage fraction becomes larger than the threshold value, the fluctuation is amplified significantly, and damage localization appears. The coupling between stress fluctuation, disordered heterogeneity and the damage localization may play an essential role in catastrophic rupture. (C) 2003 Elsevier Ltd. All rights reserved.
Resumo:
The present paper describes a numerical two-way coupling model for shock-induced laminar boundary-layer flows of a dust-laden gas and studies the transverse migration of fine particles under the action of Saffman lift force. The governing equations are formulated in the dilute two-phase continuum framework with consideration of the finiteness of the particle Reynolds and Knudsen numbers. The full Lagrangian method is explored for calculating the dispersed-phase flow fields (including the number density of particles) in the regions of intersecting particle trajectories. The computation results show a significant reaction of the particles on the two-phase boundary-layer structure when the mass loading ratio of particles takes finite values.
Resumo:
Synchronous chaos is investigated in the coupled system of two Logistic maps. Although the diffusive coupling admits all synchronized motions, the stabilities of their configurations are dependent on the transverse Lyapunov exponents while independent of the longitudinal Lyapunov exponents. It is shown that synchronous chaos is structurally stable with respect to the system parameters. The mean motion is the pseudo-orbit of an individual local map so that its dynamics can be described by the local map. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
A dynamic coupling model is developed for a hybrid atomistic-continuum computation in micro- and nano-fluidics. In the hybrid atomistic-continuum computation, a molecular dynamics (MD) simulation is utilized in one region where the continuum assumption breaks down and the Navier-Stokes (NS) equations are used in another region where the continuum assumption holds. In the overlapping part of these two regions, a constrained particle dynamics is needed to couple the MD simulation and the NS equations. The currently existing coupling models for the constrained particle dynamics have a coupling parameter, which has to be empirically determined. In the present work, a novel dynamic coupling model is introduced where the coupling parameter can be calculated as the computation progresses rather than inputing a priori. The dynamic coupling model is based on the momentum constraint and exhibits a correct relaxation rate. The results from the hybrid simulation on the Couette flow and the Stokes flow are in good agreement with the data from the full MD simulation and the solutions of the NS equations, respectively. (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
A finite element algorithm is used to analyze the process of floating zone crystal growth under microgravity. The effect of phase change convection coupled with surface tension convection is considered. The results show that the rate of crystal growth is very important. The single-crystal-melt interface is steeper than the feed-melt interface during the process of crystal growth. When the rate exceeds a critical value, the Marangoni vortex near the feed-melt interface will become so large that a secondary vortex will exist.
Resumo:
The invariant representation of the spin tensor defined as the rotation rate of a principal triad for a symmetric and non-degenerate tensor is derived on the basis of the general solution of a linear tensorial equation. The result can be naturally specified to study the. spin of the stretch tensors and to investigate the relations between various rotation rate tensors encountered frequently in modern continuum mechanics. A remarkable formula which relates the generalized stress conjugate to the generalized strain in Hill's sense. to Cauchy stress, is obtained in invariant form through the work conjugate principle. Particularly, a detailed discussion on the time rate of logarithmic strain and its conjugate stress is made as the principal axes of strain arc not fixed during deformation.