920 resultados para Spectral and NLO characteristics of Self assembled films of ZnO
Resumo:
Field effect devices have been formed in which the active layer is a thin film of poly(3-methylthiophene) grown electrochemically onto preformed source and drain electrodes. Although a field effect is present after electrochemical undoping, stable device characteristics with a high modulation ratio are obtained only after vacuum annealing at an elevated temperature, and only then if the devices are held in vacuo. The polymer is shown to be p type and the devices operate in accumulation only. The hole mobility in devices thermally annealed under vacuum is around 10 -3 cm 2 V -1 s -1. On exposure to ambient laboratory air, the device conductance increases by several orders of magnitude. This increase may be reversed by subjecting the device to a further high-temperature anneal under vacuum. Subsidiary experiments show that these effects are caused by the reversible doping of the polymer by gaseous oxygen.
Resumo:
The electrical and photoconductive features of as-grown microwave-plasma-assisted chemical-vapour deposition (MPCVD) diamond films are studied in correlation with magnetic results obtained from electron paramagnetic resonance (EPR). Also, the morphology is analysed by atomic force microscopy (AFM) showing [111] crystals with a good uniformity of the deposit. The photoresponse as well the current-voltage features observed show an efficient photogeneration of carriers while the optoelectronic characteristics of the metal-diamond junction have an ideality factor of 1.6 together with a rectification ratio of about 10(4) at +/-2.5 V. The nature of the mechanisms responsible for the conduction is discussed. (C) 1998 Elsevier Science S.A.
Resumo:
Field effect devices have been formed in which the active layer is a thin film of poly(3-methylthiophene) grown electrochemically onto preformed source and drain electrodes. Although a field effect is present after electrochemical undoping, stable device characteristics with a high modulation ratio are obtained only after vacuum annealing at an elevated temperature, and only then if the devices are held in vacuo. The polymer is shown to be p type and the devices operate in accumulation only. The hole mobility in devices thermally annealed under vacuum is around 10 -3 cm 2 V -1 s -1. On exposure to ambient laboratory air, the device conductance increases by several orders of magnitude. This increase may be reversed by subjecting the device to a further high-temperature anneal under vacuum. Subsidiary experiments show that these effects are caused by the reversible doping of the polymer by gaseous oxygen.
Resumo:
The electrical and photoconductive features of as-grown microwave-plasma-assisted chemical-vapour deposition (MPCVD) diamond films are studied in correlation with magnetic results obtained from electron paramagnetic resonance (EPR). Also, the morphology is analysed by atomic force microscopy (AFM) showing [111] crystals with a good uniformity of the deposit. The photoresponse as well the current-voltage features observed show an efficient photogeneration of carriers while the optoelectronic characteristics of the metal-diamond junction have an ideality factor of 1.6 together with a rectification ratio of about 10(4) at +/-2.5 V. The nature of the mechanisms responsible for the conduction is discussed. (C) 1998 Elsevier Science S.A.
Resumo:
The present study tested a nomological net of work engagement that was derived from its extant research. Two of the main work engagement models that have been presented and empirically tested in the literature, the JD-R model and Kahn’s model, were integrated to test the effects that job features and personal characteristics can have on work engagement through the psychological conditions of meaningfulness, safety, and availability. In this study, safety refers to psychological perceptions of safety and not workplace safety behaviors. The job features that were tested in this model included person-job fit, autonomy, co-worker relations, supervisor support, procedural justice, and interactional justice, while the personal characteristics consisted of self-consciousness, self-efficacy, extraversion, and neuroticism. Thirty-four hypotheses and a conceptual model were tested in order to establish the viability of this nomological net of work engagement in which it was expected that meaningfulness would mediate the relationships between job features and work engagement, safety would mediate the relationships that job features and personal characteristics have with work engagement, and availability (physical, emotional, and cognitive resources) would mediate the relationships that personal characteristics have with work engagement. Furthermore, analyses were run in order to determine the factor structure of work engagement, assess whether or not it exhibits differential validity from organizational commitment and job satisfaction, and confirm that it is positively related to the outcome variable of organizational citizenship behavior (OCB). The final sample consisted of 500 workers from an online labor market who responded to a questionnaire composed of measures of all constructs included in this study. Findings show that work engagement is best represented as a three-factor construct, composed of vigor, dedication and absorption. Furthermore, support was found for the distinction of work engagement from the related constructs of organizational commitment and job satisfaction. With regard to the proposed model, meaningfulness proved to be the strongest predictor of work engagement. Results show that it partially mediates the relationships that all job features have with work engagement. Safety proved to be a partial mediator of the relationships that autonomy, co-worker relations, supervisor support, procedural justice, interactional justice, and self-efficacy have with work engagement, and fully mediate the relationship between neuroticism and work engagement. Findings also show that availability partially mediates the positive relationships that extraversion and self-efficacy have with work engagement, and fully mediates the negative relationship that neuroticism has with work engagement. Finally, a positive relationship was found between work engagement and OCB. Research and organizational implications are discussed.
Resumo:
Background: Repeated self-harm represents the single strongest risk factor for suicide. To date no study with full national coverage has examined the pattern of hospital repeated presentations due to self-harm among young people. Methods: Data on consecutive self-harm presentations were obtained from the National Self-Harm Registry Ireland. Socio-demographic and behavioural characteristics of individuals aged 10–29 years who presented with self-harm to emergency departments in Ireland (2007–2014) were analysed. Risk of long-term repetition was assessed using survival analysis and time differences between the order of presentations using generalised estimating equation analysis. Results: The total sample comprised 28,700 individuals involving 42,642 presentations. Intentional drug overdose was the most prevalent method (57.9%). Repetition of self-harm occurred in 19.2% of individuals during the first year following a first presentation, of whom the majority (62.7%) engaged in one repeated act. Overall, the risk of repeated self-harm was similar between males and females. However, in the 20–24-year-old age group males were at higher risk than females. Those who used self-cutting were at higher risk for repetition than those who used intentional drug overdose, particularly among females. Age was associated with repetition only among females, in particular adolescents (15–19 years old) were at higher risk than young emerging adults (20–24 years old). Repeated self-harm risk increased significantly with the number of previous self-harm episodes. Time differences between first self-harm presentations were detected. Time between second and third presentation increased compared to time between first and second presentation among low frequency repeaters (patients with 3 presentations only within 1 year following a first presentation). The same time period decreased among high frequency repeaters (patients with at least 4 to more than 30 presentations). Conclusion: Young people with the highest risk for repeated self-harm were 15–19-year-old females and 20–24-year-old males. Self-cutting was the method associated with the highest risk of self-harm repetition. Time between first self-harm presentations represents an indicator of subsequent repetition. To prevent risk of repeated self-harm in young people, all individuals presenting at emergency departments due to self-harm should be provided with a risk assessment including psychosocial characteristics, history of self-harm and time between first presentations.
Resumo:
Background To identify those characteristics of self-management interventions in patients with heart failure (HF) that are effective in influencing health-related quality of life, mortality, and hospitalizations. Methods and Results Randomized trials on self-management interventions conducted between January 1985 and June 2013 were identified and individual patient data were requested for meta-analysis. Generalized mixed effects models and Cox proportional hazard models including frailty terms were used to assess the relation between characteristics of interventions and health-related outcomes. Twenty randomized trials (5624 patients) were included. Longer intervention duration reduced mortality risk (hazard ratio 0.99, 95% confidence interval [CI] 0.97–0.999 per month increase in duration), risk of HF-related hospitalization (hazard ratio 0.98, 95% CI 0.96–0.99), and HF-related hospitalization at 6 months (risk ratio 0.96, 95% CI 0.92–0.995). Although results were not consistent across outcomes, interventions comprising standardized training of interventionists, peer contact, log keeping, or goal-setting skills appeared less effective than interventions without these characteristics. Conclusion No specific program characteristics were consistently associated with better effects of self-management interventions, but longer duration seemed to improve the effect of self-management interventions on several outcomes. Future research using factorial trial designs and process evaluations is needed to understand the working mechanism of specific program characteristics of self-management interventions in HF patients.
Resumo:
Due to their intriguing dielectric, pyroelectric, elasto-electric, or opto-electric properties, oxide ferroelectrics are vital candidates for the fabrication of most electronics. However, these extraordinary properties exist mainly in the temperature regime around the ferroelectric phase transition, which is usually several hundreds of K away from room temperature. Therefore, the manipulation of oxide ferroelectrics, especially moving the ferroelectric transition towards room temperature, is of great interest for application and also basic research. In this thesis, we demonstrate this using examples of NaNbO3 films. We show that the transition temperature of these films can be modified via plastic strain caused by epitaxial film growth on a structurally mismatched substrate, and this strain can be fixed by controlling the stoichiometry. The structural and electronic properties of Na1+xNbO3+δ thin films are carefully examined by among others XRD (e.g. RSM) and TEM and cryoelectronic measurements. Especially the electronic features are carefully analyzed via specially developed interdigitated electrodes in combination with integrated temperature sensor and heater. The electronic data are interpreted using existing as well as novel theories and models, they are proved to be closely correlated to the structural characteristics. The major results are: -Na1+xNbO3+δ thin films can be grown epitaxially on (110)NdGaO3 with a thickness up to 140 nm (thicker films have not been studied). Plastic relaxation of the compressive strain sets in when the thickness of the film exceeds approximately 10 – 15 nm. Films with excess Na are mainly composed of NaNbO3 with minor contribution of Na3NbO4. The latter phase seems to form nanoprecipitates that are homogeneously distributed in the NaNbO3 film which helps to stabilize the film and reduce the relaxation of the strain. -For the nominally stoichiometric films, the compressive strain leads to a broad and frequency-dispersive phase transition at lower temperature (125 – 147 K). This could be either a new transition or a shift in temperature of a known transition. Considering the broadness and frequency dispersion of the transition, this is actually a transition from the dielectric state at high temperature to a relaxor-type ferroelectric state at low temperature. The latter is based on the formation of polar nano-regions (PNRs). Using the electric field dependence of the freezing temperature, allows a direct estimation of the volume (70 to 270 nm3) and diameter (5.2 to 8 nm, spherical approximation) of the PNRs. The values confirm with literature values which were measured by other technologies. -In case of the off-stoichiometric samples, we observe again the classical ferroelectric behavior. However, the thermally hysteretic phase transition which is observed around 620 – 660 K for unstrained material is shifted to room temperature due to the compressive strain. Beside to the temperature shift, the temperature dependence of the permittivity is nearly identical for strained and unstrained materials. -The last but not least, in all cases, a significant anisotropy in the electronic and structural properties is observed which arises automatically from the anisotropic strain caused by the orthorhombic structure of the substrate. However, this anisotropy cannot be explained by the classical model which tries to fit an orthorhombic film onto an orthorhombic substrate. A novel “square lattice” model in which the films adapt a “square” shaped lattice in the plane of the film during the epitaxial growth at elevated temperature (~1000 K) nicely explains the experimental results. In this thesis we sketch a way to manipulate the ferroelectricity of NaNbO3 films via strain and stoichiometry. The results indicate that compressive strain which is generated by the epitaxial growth of the film on mismatched substrate is able to reduce the ferroelectric transition temperature or induce a phase transition at low temperature. Moreover, by adding Na in the NaNbO3 film a secondary phase Na3NbO4 is formed which seems to stabilize the main phase NaNbO3 and the strain and, thus, is able to engineer the ferroelectric behavior from the expected classical ferroelectric for perfect stoichiometry to relaxor-type ferroelectric for slightly off-stoichiometry, back to classical ferroelectric for larger off-stoichiometry. Both strain and stoichiometry are proven as perfect methods to optimize the ferroelectric properties of oxide films.
Resumo:
The near infrared (NIR) spectroscopy presents itself as an interesting non-destructive test tool as it enables a fast, simple and reliable way for characterizing large samplings of biological materials in a short period of time. This work aimed to establish multivariate models to estimate the crystallinity indices and tensile and burst strength of cellulosic and nanocellulosic films through NIR spectroscopy. NIR spectra were recorded from the films before tensile and bursting strength, and crystallinity tests. Spectral information were correlated with reference values obtained by laboratory procedures through partial least square regression (PLS-R). The PLS-R model for estimating the crystallinity index presented a coefficient of determination in cross-validation (R2cv) of 0,94 and the ratio of performance to deviation (RPD) was 3,77. The mechanical properties of the films presented a high correlation with the NIR spectra: R2p = 0,85 (RPD = 2,23) for tensile and R2p = 0,93 (RPD = 3,40) for burst strength. The statistics associated to the models presented have shown that the NIR spectroscopy has the potential to estimate the crystallinity index and resistance properties of cellulose and nanocellulose films on in-line monitoring systems.
Resumo:
Low molecular weight gelators (LMWGs) based on pseudo-peptides are here studied for the preparation of supramolecular materials. These compounds can self-assemble through non-covalent interactions such as hydrogen bonds and π-π stacking, forming fibres and gels. A wide variety of materials can be prepared starting from these building blocks, which can be tuned and functionalised depending on the application. In this work, derivatives of the three aromatic amino acids L-Phenylalanine, L-Tyrosine and L-DOPA (3,4-dihydroxiphenylalanine) were synthesised and tested as gelators for water or organic solvents. First, the optimal gelating conditions were studied for each compound, varying concentration, solvent and trigger. Then the materials were characterised in terms of mechanical properties and morphology. Water remediation from dye pollution was the first focus of this work. Organogels were studied as absorbent of dyes from contaminated water. Hydrogels functionalised with TiO2 nanoparticles and graphene platelets were proposed as efficient materials for the photo-degradation of dyes. An efficient method for the incorporation of graphene inside hydrogels using the gelator itself as dispersant was proposed. In these materials a high storage modulus coexists with good self-healing and biocompatibility. The incorporation of a mineral phase inside the gel matrix was then investigated, leading to the preparation of composite organic/inorganic materials. In a first study, the growth of calcium carbonate crystals was achieved inside the hydrogel, which preserved its structure after crystal formation. Then the self-assembled fibres made of LMWGs were used for the first time instead of the polymeric ones as reinforcement inside calcium phosphate cements (CPCs) for bone regeneration. Gel-to-crystal transitions occurring with time in a metastable gel were also examined. The formation of organic crystals in gels can be achieved in multicomponent systems, in which a second gelator constitutes the independent gel network. Finally, some compounds unable to gelate were tested as underwater adhesives.
Resumo:
Universidade Estadual de Campinas . Faculdade de Educação Física
Resumo:
OBJECTIVE: The objective of this study was to compare the skeletal, dental and soft tissue characteristics of Caucasian and Afro-Caucasian Brazilian subjects with normal occlusion and to evaluate sexual dimorphism within the groups. MATERIAL AND METHODS: The sample comprised lateral cephalograms of untreated normal occlusion subjects, divided into 2 groups. Group 1 included 40 Caucasian subjects (20 of each sex), with a mean age of 13.02 years; group 2 included 40 Afro-Caucasian subjects (20 of each sex), with a mean age of 13.02 years. Groups 1 and 2 and males and females within each group were compared with t tests. RESULTS: Afro-Caucasian subjects presented greater maxillary protrusion, smaller upper anterior face height and lower posterior face height, larger upper posterior face height, greater maxillary and mandibular dentoalveolar protrusion as well as soft tissue protrusion than Caucasian subjects. The Afro-Caucasian female subjects had less mandibular protrusion and smaller total posterior facial height and upper posterior facial height than males. CONCLUSIONS: Brazilian Afro-Caucasian subjects have greater dentoalveolar and soft tissue protrusion than Brazilian Caucasian subjects, with slight sexual dimorphism in some variables.
Resumo:
Background: Medical education and training can contribute to the development of depressive symptoms that might lead to possible academic and professional consequences. We aimed to investigate the characteristics of depressive symptoms among 481 medical students (79.8% of the total who matriculated). Methods: The Beck Depression Inventory (BDI) and cluster analyses were used in order to better describe the characteristics of depressive symptoms. Medical education and training in Brazil is divided into basic (1(st) and 2(nd) years), intermediate (3(rd) and 4(th) years), and internship (5(th) and 6(th) years) periods. The study organized each item from the BDI into the following three clusters: affective, cognitive, and somatic. Statistical analyses were performed using analysis of variance (ANOVA) with post-hoc Tukey corrected for multiple comparisons. Results: There were 184 (38.2%) students with depressive symptoms (BDI > 9). The internship period resulted in the highest BDI scores in comparison to both the basic (p < .001) and intermediate (p < .001) periods. Affective, cognitive, and somatic clusters were significantly higher in the internship period. An exploratory analysis of possible risk factors showed that females (p = .020) not having a parent who practiced medicine (p = .016), and the internship period (p = .001) were factors for the development of depressive symptoms. Conclusion: There is a high prevalence towards depressive symptoms among medical students, particularly females, in the internship level, mainly involving the somatic and affective clusters, and not having a parent who practiced medicine. The active assessment of these students in evaluating their depressive symptoms is important in order to prevent the development of co-morbidities and suicide risk.
Resumo:
Context. The subject of asteroids in cometary orbits (ACOs) has been of growing interest lately. These objects have the orbital characteristics typical of comets, but are asteroidal in appearance, i.e., show no signs of a coma at any part of their orbits. At least a fraction of these objects are thought to be comets that have either exhausted all their volatile content or developed a refractory crust that prevents sublimation. In particular, the asteroid ( 5201) Ferraz-Mello has, since its discovery, been suspected to be an extinct Jupiter family comet due to the peculiar nature of its orbit. Aims. The aim of this work is to put constraints on the possible origin of ( 5201) Ferraz-Mello by means of spectroscopic characterization and a study of the dynamics of this asteroid. Methods. We used the SOAR Optical Imager (SOI) to obtain observations of ( 5201) Ferraz-Mello using four SDSS filters. These observations were compared to asteroids listed in the Sloan Moving objects catalog and also to photometry of cometary nuclei, Centaurs, and TNOs. The orbital evolution of ( 5201) Ferraz-Mello and of a sample of asteroids and comets that are close to that object in the a - e plane were simulated using a pure N-body code for 4 000 years forward and 4 000 years backward in time. Results. The reflectance spectrum obtained from its colors in the SDSS system is unusual, with a steep spectral gradient that is comparable to TNOs and Centaurs, but with an increase in the reflectance in the g band that is not common in those populations. A similar behavior is seen in cometary nuclei that were observed in the presence of a faint dust coma. The dynamical results confirm the very chaotic evolution found previously and its dynamical similarity to the chaotic evolution of some comets. The asteroid is situated in the very stochastic layer at the border of the 2/1 resonance, and it has a very short Lyapunov time ( 30 - 40) years. Together, the spectral characteristcs and the dynamical evolution suggest that ( 5201) Ferraz-Mello is a dormant or extinct comet.
Resumo:
The S phase, known as expanded austenite, is formed on the surfaces of austenitic stainless steels that are nitrided under low temperature plasma. A similar phase was observed for nitrided ferritic stainless steels and was designed as expanded ferrite or ferritic S phase. The authors treated samples of austenitic AISI 304L and AISI 316L and ferritic AISI 409 stainless steels by plasma nitriding at different temperatures and then studied the structural, morphological, chemical and corrosion characteristics of the modified layers by X-ray diffraction, scanning electron microscopy/energy dispersive spectroscopy and electrochemical tests. For both austenitic AISI 304L and AISI 316L stainless steels, the results showed that a hard S phase layer was formed on the surfaces, promoting an anodic polarisation curve displacement to higher current density values that depend on the plasma nitriding temperature. A layer having a high amount of nitrogen was formed on the ferritic AISI 409 stainless steel. X-ray diffraction measurements indicated high strain states for the modified layers formed on the three stainless steels, being more pronounced for the ferritic S phase.