973 resultados para Species availability


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The findings are presented of a survey conducted regarding the fishers of Lake Victoria, which examined the relationships affecting supply flows of raw material on to the market, and also the characteristics of fishing activities and their effects on fish quality and distribution. Fish marketing plays a vital role in the lives of much of the lake basin's population, both in terms of employment and nutrition. The results of the survey comprise, in part, a base-line data set which will facilitate further research, analysis and management decision-making in relation to stakeholders of the lake's resources. Data collection, methods and research difficulties encountered are described and details given of a profile of a boat owner/renter and aslo of a profile of a crew member. The survey shows that Lake Victoria's fishery is one of very limited diversity. The fishers recount that they consistently target one or more of the 3 most common species within the lake (Nile perch, tilapia and dagaa) and very rarely consider any other species type. The largest proportion of fishers on the lake are Nile perch fishers; there is considerable demand for this species, and hence fishers have little incentive to either target alternative fish species, not to try and establish firm marketing outlets through the creation of arrangements with their principal buyers. In Kenyan waters, however, the number of Nile perch fishers is equaled by the number of dagaa fishers; this fish now commands a considerable portion of the market for fish from Lake Victoria through its availability as well as its relatively low prices. The tilapia fishery is in decline, and all 3 riparian states would not appear to be attracting investment almost certainly as a result of declining catches. For many of those working in Lake Victoria's fishery, the problems faced appear most often to be associated with the vagaries of an unstable market which may rise or fall depending on the state of the international market or the state of access roads to fish landings. (PDF contains 42 pages)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The study of limnology is important to understand ecosystem dynamics and the ecological basis for fish production in the Lake Victoria which is important for fisheries resources use, planning and management. Physical, chemical and biological parameters are important and known to influence fish population production. Energy fixed by primary producers, e.g. algae, is transfered to higher trophic levels, e.g fish. Factors which influence the dynamics of phytoplankton and zooplankton population, e.g nutrient availability and uptake, growth rate, species composition and biomass, ultimately affect fish production. The commercial fisheries of Lake Victoria consists mainly of piscivorous Lates niloticus (L>), algivorous Oreochromis niloticus (L.) and zooplanktivorous Rastrineobola argentea (Pellegrin)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Although maritime regions support a large portion of the world’s human population, their value as habitat for other species is overlooked. Urban structures that are built in the marine environment are not designed or managed for the habitat they provide, and are built without considering the communities of marine organisms that could colonize them (Clynick et al., 2008). However, the urban waterfront may be capable of supporting a significant proportion of regional aquatic biodiversity (Duffy-Anderson et al., 2003). While urban shorelines will never return to their original condition, some scientists think that the habitat quality of urban waterfronts could be significantly improved through further research and some design modifications, and that many opportunities exist to make these modifications (Russel et al., 1983, Goff, 2008). Habitat enhancing marine structures (or HEMS) are a potentially promising approach to address the impact of cities on marine organisms including habitat fragmentation and degradation. HEMS are a type of habitat improvement project that are ecologically engineered to improve the habitat quality of urban marine structures such as bulkheads and docks for marine organisms. More specifically, HEMS attempt to improve or enhance the physical habitat that organisms depend on for survival in the inter- and sub-tidal waterfronts of densely populated areas. HEMS projects are targeted at areas where human-made structures cannot be significantly altered or removed. While these techniques can be used in suburban or rural areas restoration or removal is preferred in these settings, and HEMS are resorted to only if removal of the human-made structure is not an option. Recent research supports the use of HEMS projects. Researchers have examined the communities found on urban structures including docks, bulkheads, and breakwaters. Complete community shifts have been observed where the natural shoreline was sandy, silty, or muddy. There is also evidence of declines in community composition, ecosystem functioning, and increases in non-native species abundances in assemblages on urban marine structures. Researchers have identified two key differences between these substrates including the slope (seawalls are vertical; rocky shores contain multiple slopes) and microhabitat availability (seawalls have very little; rocky shores contain many different types). In response, researchers have suggested designing and building seawalls with gentler slopes or a combination of horizontal and vertical surfaces. Researchers have also suggested incorporating microhabitat, including cavities designed to retain water during low tide, crevices, and other analogous features (Chapman, 2003; Moreira et al., 2006) (PDF contains 4 pages)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Regulatory action to protect California’s coastal water quality from degradation by copper from recreational boats’ antifouling paints interacts with efforts to prevent transport of invasive, hull-fouling species. A copper regulatory program is in place for a major yacht basin in northern San Diego Bay and in process for other major, California boat basins. “Companion” fouling control strategies are used with copper-based antifouling paints, as some invasive species have developed resistance to the copper biocide. Such strategies are critical for boats with less toxic or nontoxic hull coatings. Boat traffic along over 3,000 miles of coastline in California and Baja California increases invasive species transport risks. For example, 80% of boats in Baja California marinas are from the United States, especially California. Policy makers, boating businesses and boat owners need information on costs and supply-side capacity for effective fouling control measures to co-manage water quality and invasive species concerns. (PDF contains 3 pages)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chlorine oxide species have received considerable attention in recent years due to their central role in the balance of stratospheric ozone. Many questions pertaining to the behavior of such species still remain unanswered and plague the ability of researchers to develop accurate chemical models of the stratosphere. Presented in this thesis are three experiments that study various properties of some specific chlorine oxide species.

In the first chapter, the reaction between ClONO_2 and protonated water clusters is investigated to elucidate a possible reaction mechanism for the heterogeneous reaction of chlorine nitrate on ice. The ionic products were various forms of protonated nitric acid, NO_2 +(H_20)_m, m = 0, 1, 2. These products are analogous to products previously reported in the literature for the neutral reaction occurring on ice surfaces. Our results support the hypothesis that the heterogeneous reaction is acid-catalyzed.

In the second chapter, the photochemistry of ClONO_2 was investigated at two wavelengths, 193 and 248 nm, using the technique of photofragmentation translational spectroscopy. At both wavelengths, the predominant dissociation pathways were Cl + NO_3 and ClO + NO_2. Channel assignments were confirmed by momentum matching the counterfragments from each channel. A one-dimensional stratospheric model using the new 248 nm branching ratio determined how our results would affect the predicted Cl_x and NO_x partitioning in the stratosphere.

Chapter three explores the photodissociation dynamics of Cl_2O at 193, 248 and 308 nm. At 193 nm, we found evidence for the concerted reaction channel, Cl_2 + O. The ClO + Cl channel was also accessed, however, the majority of the ClO fragments were formed with sufficient internal energies for spontaneous secondary dissociation to occur. At 248 and 308 nm, we only observed only the ClO + Cl channel. . Some of the ClO formed at 248 nm was formed internally hot and spontaneously dissociated. Bimodal translational energy distributions of the ClO and Cl products indicate two pathways leading to the same product exist.

Appendix A, B and C discuss the details of data analysis techniques used in Chapters 1 and 2. The development of a molecular beam source of ClO dimer is presented in Appendix D.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The health of the oceans and people are inextricably linked. For many years we focused research and policy on anthropogenic impacts to oceans and coasts. Recently we have started to think about how the health of the oceans affects us. In response to the Oceans and Human Health Act of 2004, a NOAA initiative was created to explore the “One Health” of the oceans and coasts. The Center of Excellence in Oceans and Human Health at Hollings Marine Laboratory (HML) is one of three Centers dedicated to understanding the connections and forecasting changes in ocean and coastal health and human health. The Center at HML is developing new tools and approaches, including sentinel habitats and sentinel species, to evaluate linkages between ecological process and human health and wellbeing. The results provide environmental and public health managers, policy-makers and communities forecasts and assessments to improve ecosystem-based management that protects health and mitigates risks for the oceans, coasts and people.(PDF contains 4 pages)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rainbow smelt (Osmerus mordax) are small anadromous fish that live in nearshore coastal waters during much of the year and migrate to tidal rivers to spawn during the spring. They are a key prey species in marine food webs, as they are consumed by larger organisms such as striped bass, bluefish, and seabirds. In addition, smelt are valued culturally and economically, as they support important recreational and commercial fisheries. The Atlantic Coast range of rainbow smelt has been contracting in recent decades. Historically, populations extended from the Delaware River to eastern Labrador and the Gulf of St. Lawrence (Buckley 1989). More recent observations indicate that rainbow smelt spawning populations have been extirpated south of Long Island Sound, and evidence of spawning activity is extremely limited between Long Island and Cape Cod, MA. In the Gulf of Maine region, spawning runs are still observed, but monitoring surveys as well as commercial and recreational catches indicate that these populations have also declined (e.g., Chase and Childs 2001). Many diverse factors could drive the recently noted declines in rainbow smelt populations, including spawning habitat conditions, fish health, marine environmental conditions, and fishing pressure. Few studies have assessed any of these potential threats or their joint implications. In 2004, the National Marine Fisheries Service (NMFS) listed rainbow smelt as a species of concern. Subsequently, the states of Maine, New Hampshire, and Massachusetts were awarded a grant through NMFS’s Proactive Conservation Program to gather new information on the status of rainbow smelt, identify factors that affect spawning populations, and develop a multi-state conservation program. This paper provides an overview of this collaborative project, highlighting key biological monitoring and threats assessment research that is being conducted throughout the Gulf of Maine. (PDF contains 4 pages)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rising global temperatures threaten the survival of many plant and animal species. Having already risen at an unprecedented rate in the past century, temperatures are predicted to rise between 0.3 and 7.5C in North America over the next 100 years (Hawkes et al. 2007). Studies have documented the effects of climate warming on phenology (timing of seasonal activities), with observations of early arrival at breeding grounds, earlier ends to the reproductive season, and delayed autumnal migrations (Pike et al. 2006). In addition, for species not suited to the physiological demands of cold winter temperatures, increasing temperatures could shift tolerable habitats to higher latitudes (Hawkes et al. 2007). More directly, climate warming will impact thermally sensitive species like sea turtles, who exhibit temperature-dependent sexual determination. Temperatures in the middle third of the incubation period determine the sex of sea turtle offspring, with higher temperatures resulting in a greater abundance of female offspring. Consequently, increasing temperatures from climate warming would drastically change the offspring sex ratio (Hawkes et al. 2007). Of the seven extant species of sea turtles, three (leatherback, Kemp’s ridley, and hawksbill) are critically endangered, two (olive ridley and green) are endangered, and one (loggerhead) is threatened. Considering the predicted scenarios of climate warming and the already tenuous status of sea turtle populations, it is essential that efforts are made to understand how increasing temperatures may affect sea turtle populations and how these species might adapt in the face of such changes. In this analysis, I seek to identify the impact of changing climate conditions over the next 50 years on the availability of sea turtle nesting habitat in Florida given predicted changes in temperature and precipitation. I predict that future conditions in Florida will be less suitable for sea turtle nesting during the historic nesting season. This may imply that sea turtles will nest at a different time of year, in more northern latitudes, to a lesser extent, or possibly not at all. It seems likely that changes in temperature and precipitation patterns will alter the distribution of sea turtle nesting locations worldwide, provided that beaches where the conditions are suitable for nesting still exist. Hijmans and Graham (2006) evaluate a range of climate envelope models in terms of their ability to predict species distributions under climate change scenarios. Their results suggested that the choice of species distribution model is dependent on the specifics of each individual study. Fuller et al. (2008) used a maximum entropy approach to model the potential distribution of 11 species in the Arctic Coastal Plain of Alaska under a series of projected climate scenarios. Recently, Pike (in press) developed Maxent models to investigate the impacts of climate change on green sea turtle nest distribution and timing. In each of these studies, a set of environmental predictor variables (including climate variables), for which ‘current’ conditions are available and ‘future’ conditions have been projected, is used in conjunction with species occurrence data to map potential species distribution under the projected conditions. In this study, I will take a similar approach in mapping the potential sea turtle nesting habitat in Florida by developing a Maxent model based on environmental and climate data and projecting the model for future climate data. (PDF contains 5 pages)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This report wi11 focus largely on the suborders Gammaridea, Caprellidea, and Hyperiidea because of their importance in coastal areas of the northeast Pacific Ocean. (PDF contains 27 pages)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The bay anchovy occurs along the Atlantic and Gulf of Mexico coasts, from Cape Cod, Massachusetts, to Yucatan, Mexico (Hildebrand 1963), except for the Florida Keys where it is apparently absent (Daly 1970). (PDF contains 22 pages)