902 resultados para Spatial Indexing


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a new version of the hglm package for fittinghierarchical generalized linear models (HGLM) with spatially correlated random effects. A CAR family for conditional autoregressive random effects was implemented. Eigen decomposition of the matrix describing the spatial structure (e.g. the neighborhood matrix) was used to transform the CAR random effectsinto an independent, but heteroscedastic, gaussian random effect. A linear predictor is fitted for the random effect variance to estimate the parameters in the CAR model.This gives a computationally efficient algorithm for moderately sized problems (e.g. n<5000).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a new version (> 2.0) of the hglm package for fitting hierarchical generalized linear models (HGLMs) with spatially correlated random effects. CAR() and SAR() families for conditional and simultaneous autoregressive random effects were implemented. Eigen decomposition of the matrix describing the spatial structure (e.g., the neighborhood matrix) was used to transform the CAR/SAR random effects into an independent, but eteroscedastic, Gaussian random effect. A linear predictor is fitted for the random effect variance to estimate the parameters in the CAR and SAR models. This gives a computationally efficient algorithm for moderately sized problems.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Despite success in reducing poverty over the last twenty years, inequality in Chile has remained virtually unchanged, making Chile one of the least equal countries in the world. High levels of inequality have been shown to hamper further reductions in poverty as well as economic growth and local inequality has been shown to affect such outcomes as violence and health. The study of inequality at the local level is thus crucial for understanding the economic well-being of a country. Local measures of inequality have been difficult to obtain, but recent theoretical advances have enabled the combination of survey and census data to obtain estimators of inequality that are robust at disaggregated geographic levels. In this paper, we employ this methodology to produce consistent estimators of inequality for every county in Chile. We find a great deal of variation in inequality, with county-level Gini coefficients ranging from 0.41 to 0.63.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

http://digitalcommons.colby.edu/atlasofmaine2009/1027/thumbnail.jpg

Relevância:

20.00% 20.00%

Publicador:

Resumo:

http://digitalcommons.colby.edu/atlasofmaine2006/1019/thumbnail.jpg

Relevância:

20.00% 20.00%

Publicador:

Resumo:

http://digitalcommons.colby.edu/atlasofmaine2006/1021/thumbnail.jpg