888 resultados para Spatial Data Infrastructure (SDI)


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Empirical approaches and, more recently, physical approaches, have grounded the establishment of logical connections between radiometric variables derived from remote data and biophysical variables derived from vegetation cover. This study was aimed at evaluating correlations of dendrometric and density data from canopies of Eucalyptus spp., as collected in Capao Bonito forest unit, with radiometric data from imagery acquired by the TM/Landsat-5 sensor on two orbital passages over the study site (dates close to field data collection). Results indicate that stronger correlations were identified between crown dimensions and canopy height with near-infrared spectral band data (rho(s)4), irrespective of the satellite passage date. Estimates of spatial distribution of dendrometric data and canopy density (D) using spectral characterization were consistent with the spatial distribution of tree ages during the study period. Statistical tests were applied to evaluate performance disparities of empirical models depending on which date data were acquired. Results indicated a significant difference between models based on distinct data acquisition dates.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

OBJECTIVE: To identify clusters of the major occurrences of leprosy and their associated socioeconomic and demographic factors. METHODS: Cases of leprosy that occurred between 1998 and 2007 in Sao Jose do Rio Preto (southeastern Brazil) were geocodified and the incidence rates were calculated by census tract. A socioeconomic classification score was obtained using principal component analysis of socioeconomic variables. Thematic maps to visualize the spatial distribution of the incidence of leprosy with respect to socioeconomic levels and demographic density were constructed using geostatistics. RESULTS: While the incidence rate for the entire city was 10.4 cases per 100,000 inhabitants annually between 1998 and 2007, the incidence rates of individual census tracts were heterogeneous, with values that ranged from 0 to 26.9 cases per 100,000 inhabitants per year. Areas with a high leprosy incidence were associated with lower socioeconomic levels. There were identified clusters of leprosy cases, however there was no association between disease incidence and demographic density. There was a disparity between the places where the majority of ill people lived and the location of healthcare services. CONCLUSIONS: The spatial analysis techniques utilized identified the poorer neighborhoods of the city as the areas with the highest risk for the disease. These data show that health departments must prioritize politico-administrative policies to minimize the effects of social inequality and improve the standards of living, hygiene, and education of the population in order to reduce the incidence of leprosy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Abstract Background In a classical study, Durkheim noted a direct relation between suicide rates and wealth in the XIX century France. Since that time, several studies have verified this relationship. It is known that suicide rates are associated with income, although the direction of this association varies worldwide. Brazil presents a heterogeneous distribution of income and suicide across its territory; however, evaluation for an association between these variables has shown mixed results. We aimed to evaluate the relationship between suicide rates and income in Brazil, State of São Paulo (SP), and City of SP, considering geographical area and temporal trends. Methods Data were extracted from the National and State official statistics departments. Three socioeconomic areas were considered according to income, from the wealthiest (area 1) to the poorest (area 3). We also considered three regions: country-wide (27 Brazilian States and 558 Brazilian micro-regions), state-wide (645 counties of SP State), and city-wide (96 districts of SP city). Relative risks (RR) were calculated among areas 1, 2, and 3 for all regions, in a cross-sectional approach. Then, we used Joinpoint analysis to explore the temporal trends of suicide rates and SaTScan to investigate geographical clusters of high/low suicide rates across the territory. Results Suicide rates in Brazil, the State of SP, and the city of SP were 6.2, 6.6, and 5.4 per 100,000, respectively. Taking suicide rates of the poorest area (3) as reference, the RR for the wealthiest area was 1.64, 0.88, and 1.65 for Brazil, State of SP, and city of SP, respectively (p for trend <0.05 for all analyses). Spatial cluster of high suicide rates were identified at Brazilian southern (RR = 2.37), state of SP western (RR = 1.32), and city of SP central (RR = 1.65) regions. A direct association between income and suicide were found for Brazil (OR = 2.59) and the city of SP (OR = 1.07), and an inverse association for the state of SP (OR = 0.49). Conclusions Temporospatial analyses revealed higher suicide rates in wealthier areas in Brazil and the city of SP and in poorer areas in the State of SP. We further discuss the role of socioeconomic characteristics for explaining these discrepancies and the importance of our findings in public health policies. Similar studies in other Brazilian States and developing countries are warranted.