993 resultados para Space biology
Resumo:
An exciting frontier in quantum information science is the integration of otherwise "simple'' quantum elements into complex quantum networks. The laboratory realization of even small quantum networks enables the exploration of physical systems that have not heretofore existed in the natural world. Within this context, there is active research to achieve nanoscale quantum optical circuits, for which atoms are trapped near nano-scopic dielectric structures and "wired'' together by photons propagating through the circuit elements. Single atoms and atomic ensembles endow quantum functionality for otherwise linear optical circuits and thereby enable the capability of building quantum networks component by component. Toward these goals, we have experimentally investigated three different systems, from conventional to rather exotic systems : free-space atomic ensembles, optical nano fibers, and photonics crystal waveguides. First, we demonstrate measurement-induced quadripartite entanglement among four quantum memories. Next, following the landmark realization of a nanofiber trap, we demonstrate the implementation of a state-insensitive, compensated nanofiber trap. Finally, we reach more exotic systems based on photonics crystal devices. Beyond conventional topologies of resonators and waveguides, new opportunities emerge from the powerful capabilities of dispersion and modal engineering in photonic crystal waveguides. We have implemented an integrated optical circuit with a photonics crystal waveguide capable of both trapping and interfacing atoms with guided photons, and have observed the collective effect, superradiance, mediated by the guided photons. These advances provide an important capability for engineered light-matter interactions, enabling explorations of novel quantum transport and quantum many-body phenomena.
Resumo:
Until now observations on the temporal variation of size of freshwater copepods have not provided much information. Other observers only mention in passing this or that phenomenon from which it is possible to deduct termporal variations. In this study Cyclops strenuus s.l., a freshwater species of fairly wide distribution, is studied in two water bodies. The author studies the systematic, placing of inhabitants described as C. strenuus Fischer in both locations, their annual life cycle, and their annual size variations.
Resumo:
We will prove that, for a 2 or 3 component L-space link, HFL- is completely determined by the multi-variable Alexander polynomial of all the sub-links of L, as well as the pairwise linking numbers of all the components of L. We will also give some restrictions on the multi-variable Alexander polynomial of an L-space link. Finally, we use the methods in this paper to prove a conjecture of Yajing Liu classifying all 2-bridge L-space links.
Resumo:
We introduce an in vitro diagnostic magnetic biosensing platform for immunoassay and nucleic acid detection. The platform has key characteristics for a point-of-use (POU) diagnostic: portability, low-power consumption, low cost, and multiplexing capability. As a demonstration of capabilities, we use this platform for the room temperature, amplification-free detection of a 31 bp DNA oligomer and interferon-gamma (a protein relevant for tuberculosis diagnosis). Reliable assay measurements down to 100 pM for the DNA and 1 pM for the protein are demonstrated. We introduce a novel "magnetic freezing" technique for baseline measurement elimination and to enable spatial multiplexing. We have created a general protocol for adapting integrated circuit (IC) sensors to any of hundreds of commercially available immunoassay kits and custom designed DNA sequences.
We also introduce a method for immunotherapy treatment of malignant gliomas. We utilize leukocytes internalized with immunostimulatory nanoparticle-oligonucleotide conjugates to localize and retain immune cells near the tumor site. As a proof-of-principle, we develop a novel cell imaging and incubation chamber for in vitro magnetic motility experiments. We use the apparatus to demonstrate the controlled movement of magnetically loaded THP-1 leukocytes.
Finally, we introduce an IC transmitter and power ampli er (PA) that utilizes electronic digital infrastructure, sensors, and actuators to self-heal and adapt to process, dynamic, and environmental variation. Traditional IC design has achieved incredible degrees of reliability by ensuring that billions of transistors on a single IC die are all simultaneously functional. Reliability becomes increasingly difficult as the size of a transistor shrinks. Self-healing can mitigate these variations.
Resumo:
The propagation of cosmic rays through interstellar space has been investigated with the view of determining what particles can traverse astronomical distances without serious loss of energy. The principal method of loss of energy of high energy particles is by interaction with radiation. It is found that high energy (1013-1018ev) electrons drop to one-tenth their energy in 108 light years in the radiation density in the galaxy and that protons are not significantly affected in this distance. The origin of the cosmic rays is not known so that various hypotheses as to their origin are examined. If the source is near a star it is found that the interaction of electrons and photons with the stellar radiation field and the interaction of electrons with the stellar magnetic field limit the amount of energy which these particles can carry away from the star. However, the interaction is not strong enough to affect the energy of protons or light nuclei appreciably. The chief uncertainty in the results is due to the possible existence of general galactic magnetic field. The main conclusion reached is that if there is a general galactic magnetic field, then the primary spectrum has very few photons, only low energy (˂ 1013 ev) electrons and the higher energy particles are primarily protons regardless of the source mechanism, and if there is no general galactic magnetic field, then the source of cosmic rays accelerates mainly protons and the present rate of production is much less than that in the past.
Resumo:
Observations and laboratory experiments are summarised that examine the widely discussed issue of what Gammarus pulex feeds on. On the basis of the observations of the authors and data from the literature it can be noted that G. pulex belongs to the omnivorous organisms, but, depending on the conditions of subsistence, in its rations either plant or animal food can predominate.
Resumo:
The fractional Fourier transform of an object can be observed in the free-space Fresnel diffraction pattern of the object. (C) 1997 Optical Society of America
Resumo:
Seasonal changes and flooding have an extraordinarily great influence on the drift of organisms. The free water space plays the main part in the provision of food for some fish (Salmo trutta - trout): drift and content of the stomach are balanced here (Simuliidae): whereas others (Thymallus vulgaris) only selectively chose certain animals living at the bottom (molluscs). The total drift, drift of organisms and drift of organic material and minerals, plays a main role in the rate of production in streams. Besides the biology of the organisms living on the river bed, also the geological and hydrographical situation of the area plays a very important role for the composition of the drift. During the years 1964-1966 three streams in the characteristical geological formations flysch, gneiss and chalk of lower Austria were studied in regard to their drift. The Tulln (above St. Christopen), the Krems (above Senftenberg) and the Schwarza (above Hirschwang) seemed to be ideal for this comparative study because they are easy to reach. After summarising the hydrography and chemistry of examined rivers, the author examines the relationship between water level and total drift and the stratification of the total drift before analysing the drift of living organisms. Also considered are seasonal changes of drift of organisms and drift of exuviae.
Resumo:
The ambiguity function was employed as a merit function to design an optical system with a high depth of focus. The ambiguity function with the desired enlarged-depth-of-focus characteristics was obtained by using a properly designed joint filter to modify the ambiguity function of the original pupil in the phase-space domain. From the viewpoint of the filter theory, we roughly propose that the constraints of the spatial filters that are used to enlarge the focal depth must be satisfied. These constraints coincide with those that appeared in the previous literature on this topic. Following our design procedure, several sets of apodizers were synthesized, and their performances in the defocused imagery were compared with each other and with other previous designs. (c) 2005 Optical Society of America.
Resumo:
In this thesis an extensive study is made of the set P of all paranormal operators in B(H), the set of all bounded endomorphisms on the complex Hilbert space H. T ϵ B(H) is paranormal if for each z contained in the resolvent set of T, d(z, σ(T))//(T-zI)-1 = 1 where d(z, σ(T)) is the distance from z to σ(T), the spectrum of T. P contains the set N of normal operators and P contains the set of hyponormal operators. However, P is contained in L, the set of all T ϵ B(H) such that the convex hull of the spectrum of T is equal to the closure of the numerical range of T. Thus, N≤P≤L.
If the uniform operator (norm) topology is placed on B(H), then the relative topological properties of N, P, L can be discussed. In Section IV, it is shown that: 1) N P and L are arc-wise connected and closed, 2) N, P, and L are nowhere dense subsets of B(H) when dim H ≥ 2, 3) N = P when dimH ˂ ∞ , 4) N is a nowhere dense subset of P when dimH ˂ ∞ , 5) P is not a nowhere dense subset of L when dimH ˂ ∞ , and 6) it is not known if P is a nowhere dense subset of L when dimH ˂ ∞.
The spectral properties of paranormal operators are of current interest in the literature. Putnam [22, 23] has shown that certain points on the boundary of the spectrum of a paranormal operator are either normal eigenvalues or normal approximate eigenvalues. Stampfli [26] has shown that a hyponormal operator with countable spectrum is normal. However, in Theorem 3.3, it is shown that a paranormal operator T with countable spectrum can be written as the direct sum, N ⊕ A, of a normal operator N with σ(N) = σ(T) and of an operator A with σ(A) a subset of the derived set of σ(T). It is then shown that A need not be normal. If we restrict the countable spectrum of T ϵ P to lie on a C2-smooth rectifiable Jordan curve Go, then T must be normal [see Theorem 3.5 and its Corollary]. If T is a scalar paranormal operator with countable spectrum, then in order to conclude that T is normal the condition of σ(T) ≤ Go can be relaxed [see Theorem 3.6]. In Theorem 3.7 it is then shown that the above result is not true when T is not assumed to be scalar. It was then conjectured that if T ϵ P with σ(T) ≤ Go, then T is normal. The proof of Theorem 3.5 relies heavily on the assumption that T has countable spectrum and cannot be generalized. However, the corollary to Theorem 3.9 states that if T ϵ P with σ(T) ≤ Go, then T has a non-trivial lattice of invariant subspaces. After the completion of most of the work on this thesis, Stampfli [30, 31] published a proof that a paranormal operator T with σ(T) ≤ Go is normal. His proof uses some rather deep results concerning numerical ranges whereas the proof of Theorem 3.5 uses relatively elementary methods.
Resumo:
The Siberian Dace (Leuciscus leuciscus baicalensis (Dyb)is an important trade fish in Siberian waters. In the Ob basin more than 30,000 centners are produced annually. Catches of dace fluctuate significantly both between different rivers and between years in the Tomsk region. Defining the stocks of dace in the waters of the Tomsk region and explaining the fluctuations over time seems to be a very important and relevant question for the workers of the fishing industry. An answer, however, requires an accurate knowledge of the biology of dace; its reproductive, feeding and migration habits and the conditions of wintering etc. In the following we examine one of the above questions i.e. the biology of the reproduction of dace. The study was carried out in the Middle Ob in May 1951. This tranlations provides the introduction, summary and table captions only of the original article.
Resumo:
Oreochrimis niloticus (L.) was introduced to Lake victoria in the 1950s. It remained relatively uncommon in catches until 1965, when the numbers began to increase dramatically. It is now the third most important commercial fish species after the Nile perch, Lates niloticus (L.) and Rastrineobola argentea (Pellegrin). Oreochromis niloticus is considered a herbivore, feeding mostly on algae and plant material. The diet now appears to be more diversified , with insects, fish, algae and plant materials all being important food items. Fish smaller than 5 cm TL have a diverse diet but there is a decline in the importance of zooplankton, the preferred food item of small fish, as fish get larger. The shift in diet could be due to changes which have occurred in the lake. Water hyacinth, Eichhornia crassipes (Mart.) Solms, which harbours numerous insects in its root balls, now has extensively coverage over the lake. The native fish species which preyed on these insects (e.g. haplochromines) have largely been eliminated and O. niloticus could be filling niches previously occupied by these cichlids and non cichlid fishes. The change in diet could also be related to food availability and abundance where the fish is feeding on the most readily available food items.