906 resultados para Soybean -- Biotechnology
Resumo:
Carotenoids prevent different degenerative diseases and improve human health. Microalgae are commercially exploited for carotenoids, including astaxanthin and β-carotene. Two commercially important microalgae, Dunaliella salina and Tetraselmis suecica, were treated with plant hormones salicylic acid (SA) and methyl jasmonate (MJ), or by UV-C radiation (T. suecica only) and a combination thereof. Significant increases in total carotenoids were found for D. salina and T. suecica after treatment with MJ (10 μmol/L) and SA (70–250 μmol/L), respectively. T. suecica also had significant increases in total carotenoids following UV-C radiation compared to control cultures. Among the carotenoids, lutein was the highest induced carotenoid. A combination of these two treatments also showed a significant increase in total carotenoids and lutein for T. suecica, when compared to controls. Plant hormones and UV-C radiation may be useful tools for increasing carotenoid accumulation in green microalgae although the responses are species- and dose-specific and should be trialed in medium to large scale to explore commercial production.
Resumo:
A recent controversy in the United States over drug pricing by Turing Pharmaceuticals AG has raised larger issues in respect of intellectual property, access to medicines, and the Trans-Pacific Partnership (TPP). In August 2015, Turing Pharmaceuticals AG – a private biopharmaceutical company with offices in New York, the United States, and Zug, Switzerland - acquired the exclusive marketing rights to Daraprim in the United States from Impax Laboratories Incorporated. Martin Shkreli, Turing’s Founder and Chief Executive Officer, maintained: “The acquisition of Daraprim and our toxoplasmosis research program are significant steps along Turing’s path of bringing novel medications to patients with serious disorders, some of whom often go undiagnosed and untreated.” He emphasised: “We intend to invest in the development of new drug candidates that we hope will yield an even better clinical profile, and also plan to launch an educational effort to help raise awareness and improve diagnosis for patients with toxoplasmosis.” In September 2015, there was much public controversy over the decision of Martin Shkreli to raise the price of a 62 year old drug, Daraprim, from $US13.50 to $US750 a pill. The drug is particularly useful in respect to the treatment and prevention of malaria, and in the treatment of infections in individuals with HIV/AIDS. Daraprim is listed on the World Health Organization’s (WHO) List of Essential Medicines. In the face of much criticism, Martin Shkreli has said that he will reduce the price of Daraprim. He observed: “We've agreed to lower the price on Daraprim to a point that is more affordable and is able to allow the company to make a profit, but a very small profit.” He maintained: “We think these changes will be welcomed.” However, he has been vague and ambiguous about the nature of the commitment. Notably, the lobby group, Pharmaceutical Research and Manufacturers of America (PhARMA), disassociated itself from the claims of Turing Pharmaceuticals. The group said: “PhRMA members have a long history of drug discovery and innovation that has led to increased longevity and improved lives for millions of patients.” The group noted: “Turing Pharmaceutical is not a member of PhRMA and we do not embrace either their recent actions or the conduct of their CEO.” The biotechnology peak body Biotechnology Industry Organization also sought to distance itself from Turing Pharmaceuticals. A hot topic: United States political debate about access to affordable medicines This controversy over Daraprim is unusual – given the age of drug concerned. Daraprim is not subject to patent protection. Nonetheless, there remains a monopoly in respect of the marketplace. Drug pricing is not an isolated problem. There have been many concerns about drug pricing – particularly in respect of essential medicines for HIV/AIDS, tuberculosis, and malaria. This recent controversy is part of a larger debate about access to affordable medicines. The dispute raises larger issues about healthcare, consumer rights, competition policy, and trade. The Daraprim controversy has provided impetus for law reform in the US. US Presidential Candidate Hillary Clinton commented: “Price gouging like this in this specialty drug market is outrageous.” In response to her comments, the Nasdaq Biotechnology Index fell sharply. Hillary Clinton has announced a prescription drug reform plan to protect consumers and promote innovation – while putting an end to profiteering. On her campaign site, she has emphasised that “affordable healthcare is a basic human right.” Her rival progressive candidate, Bernie Sanders, was also concerned about the price hike. He wrote a letter to Martin Shkreli, complaining about the price increase for the drug Daraprim. Sanders said: “The enormous, overnight price increase for Daraprim is just the latest in a long list of skyrocketing price increases for certain critical medications.” He has pushed for reforms to intellectual property to make medicines affordable. The TPP and intellectual property The Daraprim controversy and political debate raises further issues about the design of the TPP. The dispute highlights the dangers of extending the rights of pharmaceutical drug companies under intellectual property, investor-state dispute settlement, and drug administration. Recently, the civil society group Knowledge Ecology International published a leaked draft of the Intellectual Property Chapter of the TPP. Knowledge Ecology International Director, James Love, was concerned the text revealed that the US “continues to be the most aggressive supporter of expanded intellectual property rights for drug companies.” He was concerned that “the proposals contained in the TPP will harm consumers and in some cases block innovation.” James Love feared: “In countless ways, the Obama Administration has sought to expand and extend drug monopolies and raise drug prices.” He maintained: “The astonishing collection of proposals pandering to big drug companies make more difficult the task of ensuring access to drugs for the treatment of cancer and other diseases and conditions.” Love called for a different approach to intellectual property and trade: “Rather than focusing on more intellectual property rights for drug companies, and a death-inducing spiral of higher prices and access barriers, the trade agreement could seek new norms to expand the funding of medical research and development (R&D) as a public good, an area where the US has an admirable track record, such as the public funding of research at the National Institutes of Health (NIH) and other federal agencies.” In addition, there has been much concern about the Investment Chapter of the TPP. The investor-state dispute settlement regime would enable foreign investors to challenge government policy making, which affected their investments. In the context of healthcare, there is a worry that pharmaceutical drug companies will deploy their investor rights to challenge public health measures – such as, for instance, initiatives to curb drug pricing and profiteering. Such concerns are not merely theoretical. Eli Lilly has brought an investor action against the Canadian Government over the rejection of its drug patents under the investor-state dispute settlement regime of the North American Free Trade Agreement (NAFTA). The Health Annex to the TPP also raises worries that pharmaceutical drug companies will able to object to regulatory procedures in respect of healthcare. It is disappointing that the TPP – in the leaks that we have seen – has only limited recognition of the importance of access to essential medicines. There is a need to ensure that there are proper safeguards to provide access to essential medicines – particularly in respect of HIV/AIDs, malaria, and tuberculosis. Moreover, there must be protection against drug profiteering and price gouging in any trade agreement. There should be strong measures against the abuse of intellectual property rights. The dispute over Turing Pharmaceuticals AG and Daraprim is an important cautionary warning in respect of some of the dangers present in the secret negotiations in respect of the TPP. There is a need to preserve consumer rights, competition policy, and public health in trade negotiations over an agreement covering the Pacific Rim.
Resumo:
In Atlanta, the trade ministers of a dozen countries across the Pacific Rim announced that they had successfully reached a concluded agreement upon the Trans-Pacific Partnership. The debate over the TPP will now play out in legislatures across the Pacific Rim, where sentiment towards the deal is much more mixed. The ministers insisted: “After more than five years of intensive negotiations, we have come to an agreement that will support jobs, drive sustainable growth, foster inclusive development, and promote innovation across the Asia-Pacific region … The agreement achieves the goal we set forth of an ambitious, comprehensive, high standard and balanced agreement that will benefit our nation’s citizens … We expect this historic agreement to promote economic growth, support higher-paying jobs; enhance innovation, productivity and competitiveness; raise living standards; reduce poverty in our countries; and to promote transparency, good governance, and strong labor and environmental protections.” But there has been fierce criticism of the Trans-Pacific Partnership, because of both its secrecy and its substance. Nobel Laureate Professor Joseph Stiglitz has warned that the agreement is not about free trade, but about the protection of corporate monopolies. The intellectual property chapter provides for longer and stronger protection of intellectual property rights. The investment chapter provides foreign investors with the power to challenge governments under an investor-state dispute settlement (ISDS) regime. The environment chapter is weak and toothless, and seems to be little more than an exercise in greenwashing. The health annex — and many other parts of the agreement — strengthen the power of pharmaceutical companies and biotechnology developers. The text on state-owned enterprises raises concerns about public ownership of postal services, broadcasters and national broadband services.
Resumo:
Expressed sequence tag (EST) databases provide a primary source of nuclear DNA sequences for genetic marker development in non-model organisms. To date, the process has been relatively inefficient for several reasons: - 1) priming site polymorphism in the template leads to inferior or erratic amplification; - 2) introns in the target amplicon are too large and/or numerous to allow effective amplification under standard screening conditions, and; - 3) at least occasionally, a PCR primer straddles an exon–intron junction and is unable to bind to genomic DNA template. The first is only a minor issue for species or strains with low heterozygosity but becomes a significant problem for species with high genomic variation, such as marine organisms with extremely large effective population sizes. Problems arising from unanticipated introns are unavoidable but are most pronounced in intron-rich species, such as vertebrates and lophotrochozoans. We present an approach to marker development in the Pacific oyster Crassostrea gigas, a highly polymorphic and intron-rich species, which minimizes these problems, and should be applicable to other non-model species for which EST databases are available. Placement of PCR primers in the 3′ end of coding sequence and 3′ UTR improved PCR success rate from 51% to 97%. Almost all (37 of 39) markers developed for the Pacific oyster were polymorphic in a small test panel of wild and domesticated oysters.
Resumo:
A single lineage of Nicotiana benthamiana is widely used as a model plant1 and has been instrumental in making revolutionary discoveries about RNA interference (RNAi), viral defence and vaccine production. It is peerless in its susceptibility to viruses and its amenability in transiently expressing transgenes2,3. These unparalleled characteristics have been associated both positively and negatively with a disruptive insertion in the RNA-dependent RNA polymerase 1 gene, Rdr14–6. For a plant so routinely used in research, the origin, diversity and evolution of the species, and the basis of its unusual abilities, have been relatively unexplored. Here, by comparison with wild accessions from across the spectrum of the species’ natural distribution, we show that the laboratory strain of N. benthamiana is an extremophile originating from a population that has retained a mutation in Rdr1 for ∼0.8 Myr and thereby traded its defence capacity for early vigour and survival in the extreme habitat of central Australia. Reconstituting Rdr1 activity in this isolate provided protection. Silencing the functional allele in a wild strain rendered it hypersusceptible and was associated with a doubling of seed size and enhanced early growth rate. These findings open the way to a deeper understanding of the delicate balance between protection and vigour.
Resumo:
Increasing salinity levels in freshwater and coastal environments caused by sea level rise linked to climate change is now recognized to be a major factor that can impact fish growth negatively, especially for freshwater teleost species. Striped catfish (Pangasianodon hypophthalmus) is an important freshwater teleost that is now widely farmed across the Mekong River Delta in Vietnam. Understanding the basis for tolerance and adaptation to raised environmental salinity conditions can assist the regional culture industry to mitigate predicted impacts of climate change across this region. Attempt of next generation sequencing using the ion proton platform results in more than 174 million raw reads from three tissue libraries (gill, kidney and intestine). Reads were filtered and de novo assembled using a variety of assemblers and then clustered together to generate a combined reference transcriptome. Downstream analysis resulted in a final reference transcriptome that contained 60,585 transcripts with an N50 of 683 bp. This resource was further annotated using a variety of bioinformatics databases, followed by differential gene expression analysis that resulted in 3062 transcripts that were differentially expressed in catfish samples raised under two experimental conditions (0 and 15 ppt). A number of transcripts with a potential role in salinity tolerance were then classified into six different functional gene categories based on their gene ontology assignments. These included; energy metabolism, ion transportation, detoxification, signal transduction, structural organization and detoxification. Finally, we combined the data on functional salinity tolerance genes into a hypothetical schematic model that attempted to describe potential relationships and interactions among target genes to explain the molecular pathways that control adaptive salinity responses in P. hypophthalmus. Our results indicate that P. hypophthalmus exhibit predictable plastic regulatory responses to elevated salinity by means of characteristic gene expression patterns, providing numerous candidate genes for future investigations.
Resumo:
Pangasianodon hypophthalmus is a commercially important freshwater fish used in inland aquaculture in the Mekong Delta, Vietnam. The current study using Ion Torrent technology generated EST resources from the kidney for Tra catfish reared at a salinity level of 9 ppt. We obtained 2,623,929 reads after trimming and processing with an average length of 104 bp. De novo assemblies were generated using CLC Genomic Workbench, Trinity and Velvet/Oases with the best overall contig performance resulting from the CLC assembly. De novo assembly using CLC yielded 29,940 contigs, and allowing identification of 5,710 putative genes when comppared with NCBI non-redundant database. A large number of single nucleotide polymorphisms (SNPs) were also detected. The sequence collection generated in our study represents the most comprehensive transcriptomic resource for P. hypophthalmus available to date.
Resumo:
In order to meet the world’s growing energy demand and reduce the impact of greenhouse gas emissions resulting from fossil fuel combustion, renewable plant-based feedstocks for biofuel production must be considered. The first-generation biofuels, derived from starches of edible feedstocks, such as corn, create competition between food and fuel resources, both for the crop itself and the land on which it is grown. As such, biofuel synthesized from non-edible plant biomass (lignocellulose) generated on marginal agricultural land will help to alleviate this competition. Eucalypts, the broadly defined taxa encompassing over 900 species of Eucalyptus, Corymbia, and Angophora are the most widely planted hardwood tree in the world, harvested mainly for timber, pulp and paper, and biomaterial products. More recently, due to their exceptional growth rate and amenability to grow under a wide range of environmental conditions, eucalypts are a leading option for the development of a sustainable lignocellulosic biofuels. However, efficient conversion of woody biomass into fermentable monomeric sugars is largely dependent on pretreatment of the cell wall, whose formation and complexity lend itself toward natural recalcitrance against its efficient deconstruction. A greater understanding of this complexity within the context of various pretreatments will allow the design of new and effective deconstruction processes for bioenergy production. In this review, we present the various pretreatment options for eucalypts, including research into understanding structure and formation of the eucalypt cell wall.
Resumo:
Transgenic engineering of plants is important in both basic and applied research. However, the expression of a transgene can dwindle over time as the plant's small (s)RNA-guided silencing pathways shut it down. The silencing pathways have evolved as antiviral defence mechanisms, and viruses have co-evolved viral silencing-suppressor proteins (VSPs) to block them. Therefore, VSPs have been routinely used alongside desired transgene constructs to enhance their expression in transient assays. However, constitutive, stable expression of a VSP in a plant usually causes pronounced developmental abnormalities, as their actions interfere with endogenous microRNA-regulated processes, and has largely precluded the use of VSPs as an aid to stable transgene expression. In an attempt to avoid the deleterious effects but obtain the enhancing effect, a number of different VSPs were expressed exclusively in the seeds of Arabidopsis thaliana alongside a three-step transgenic pathway for the synthesis of arachidonic acid (AA), an ω-6 long chain polyunsaturated fatty acid. Results from independent transgenic events, maintained for four generations, showed that the VSP-AA-transformed plants were developmentally normal, apart from minor phenotypes at the cotyledon stage, and could produce 40% more AA than plants transformed with the AA transgene cassette alone. Intriguingly, a geminivirus VSP, V2, was constitutively expressed without causing developmental defects, as it acts on the siRNA amplification step that is not part of the miRNA pathway, and gave strong transgene enhancement. These results demonstrate that VSP expression can be used to protect and enhance stable transgene performance and has significant biotechnological application.
Resumo:
Brassica napus is one of the most important oil crops in the world, and stem rot caused by the fungus Sclerotinia sclerotiorum results in major losses in yield and quality. To elucidate resistance genes and pathogenesis-related genes, genome-wide association analysis of 347 accessions was performed using the Illumina 60K Brassica SNP (single nucleotide polymorphism) array. In addition, the detached stem inoculation assay was used to select five highly resistant (R) and susceptible (S) B. napus lines, 48 h postinoculation with S. sclerotiorum for transcriptome sequencing. We identified 17 significant associations for stem resistance on chromosomes A8 and C6, five of which were on A8 and 12 on C6. The SNPs identified on A8 were located in a 409-kb haplotype block, and those on C6 were consistent with previous QTL mapping efforts. Transcriptome analysis suggested that S. sclerotiorum infection activates the immune system, sulphur metabolism, especially glutathione (GSH) and glucosinolates in both R and S genotypes. Genes found to be specific to the R genotype related to the jasmonic acid pathway, lignin biosynthesis, defence response, signal transduction and encoding transcription factors. Twenty-four genes were identified in both the SNP-trait association and transcriptome sequencing analyses, including a tau class glutathione S-transferase (GSTU) gene cluster. This study provides useful insight into the molecular mechanisms underlying the plant's response to S. sclerotiorum.
Resumo:
Sorghum (Sorghum bicolor) is one of the most important cereal crops globally and a potential energy plant for biofuel production. In order to explore genetic gain for a range of important quantitative traits, such as drought and heat tolerance, grain yield, stem sugar accumulation, and biomass production, via the use of molecular breeding and genomic selection strategies, knowledge of the available genetic variation and the underlying sequence polymorphisms, is required.
Resumo:
Diaporthe (syn. Phomopsis) species are well-known saprobes, endophytes or pathogens on a range of plants. Several species have wide host ranges and multiple species may sometimes colonise the same host species. This study describes eight novel Diaporthe species isolated from live and/or dead tissue from the broad acre crops lupin, maize, mungbean, soybean and sunflower, and associated weed species in Queensland and New South Wales, as well as the environmental weed bitou bush (Chrysanthemoides monilifera subsp. rotundata) in eastern Australia. The new taxa are differentiated on the basis of morphology and DNA sequence analyses based on the nuclear ribosomal internal transcribed spacer region, and part of the translation elongation factor-1α and ß-tubulin genes. The possible agricultural significance of live weeds and crop residues ('green bridges') as well as dead weeds and crop residues ('brown bridges') in aiding survival of the newly described Diaporthe species is discussed.
Resumo:
A rate equation is developed for the liquid phase hydrogenation of aniline over cylindrical catalyst pellets of 30% nickel deposited on clay in a trickle bed reactor. The equation takes into account external and internal diffusional limitations, and describes the experimental data adequately. The hydrogenation reaction is first order with respect to hydrogen and zero order with respect to aniline. Effectiveness factors are in the range 0.003-0.03. Apparent activation energy of the reaction is 12.7 kcal/mol and true activation energy is 39.6 kcal/mol.
Resumo:
- Description of the work Harvest: A biotextile future consists of four bags constructed from kombucha, each utilizing a different approach to this material. The kombucha material is a byproduct of the fermented green tea, kombucha, and is comprised of a symbiotic culture of bacteria and yeast (SCOBY) that forms a fast growing curd or pellicle on the surface of the tea. This pellicle is harvested, washed, and dried to make a material with characteristics that can range between leather and paper in handle. The pellicle is one hundred per cent cellulose, with the individual fibres growing together to produce a durable and strong non-woven textile. Techniques explored with the dry kombucha material include folding, stitching, and laser etching. The final bags were designed with reference to classic tropes of fashion accessories: the briefcase, the clutch, the valise and the handbag. The valise included three jars in which the kombucha was displayed as ‘growing’ within the bag. - Research Background This work sits within an emerging field of practice in which fashion design intersects with biotechnology. Designers such as Suzanne Lee have explored constructing garments from bacteria byproducts, and bio-artists Oron Catts and Ionat Zurr have created ‘victimless leather’ grown from cultured cells. Although still speculative, these collaborations between science and design point to new material applications for fashion. Our work contributes to this area through testing both the growing of the textile and its application to construct durable fashion artefacts. - Research Contribution Harvest: A biotextile future makes two contributions to new knowledge in the area of design for sustainability within fashion. The first contribution lies in extending the technical experimentation required to grow and manipulate the textile. For the briefcase, the pattern shape was ‘grown’ into the required shape, using a shaped container. Other techniques used in the bags included weaving, folding and laser etching the material to extend its functional and decorative properties. Experimentation with the growing and drying of the material led to the production of a wide range of physical properties, in which the material was more brittle or flexible as required. The second research contribution lies in the proposal of this material for use in durable fashion accessories. The material is still speculative and small-scale in production, however the four bags illustrate the potential for kombucha as a biodegradable alternative to leather or synthetic materials. - Research Significance This interplay of science and design research opens up an exploration for a speculative future of sustainable, biodegradable textiles using live bacteria to enable ‘homegrown’ vegan apparel. The collaborators on this project include scientist Peter Musk and fashion designers Alice Payne and Dean Brough. Harvest: A biotextile future was exhibited at the State Library of Queensland’s Asia Pacific Design Library, 1-5 November 2015, as part of The International Association of Societies of Design Research’s (IASDR) biannual design conference. The work was chosen for display by a panel of experts, based on the criteria of design innovation and contribution to new knowledge in design.