977 resultados para Solar panels
Resumo:
Thermal fatigue analysis based on 2D finite difference and 3D finite element methods is carried out to study the performance of solar panel structure during micro-satellite life time. Solar panel primary structure consists of honeycomb structure and composite laminates. The 2D finite difference (I-DEAS) model yields predictions of the temperature profile during one orbit. Then, 3D finite element analysis (ANSYS) is applied to predict thermal fatigue damage of solar panel structure. Meshing the whole structure with 2D multi-layer shell elements with sandwich option is not efficient, as it misses thermal response of the honeycomb structure. So we applied a mixed approach between 3D solid and 2D shell elements to model the solar panel structure without the sandwich option.
Resumo:
Analysis of non-traditional Variable Stiffness (VS) laminates, obtained by steering the fiber orientation as a spatial function of location, have shown to improve buckling load carrying capacity of flat rectangular panels under axial compressive loads. In some cases the buckling load of simply supported panels doubled compared to the best conventional laminate with straight fibers. Two distinct cases of stiffness variation, one due to fiber orientation variation in the direction of the loading, and the other one perpendicular to the loading direction, were identified as possible contributors to the buckling load improvements. In the first case, the increase was attributed to the favorable distribution of the transverse in-plane stresses over the panel platform. In the second case, a higher degree of improvement was obtained due to the re-distribution of the applied in-plane loads. Experimental results, however, showed substantially higher levels of buckling load improvements compared with theoretical predictions. The additional improvement was determined to be due to residual stresses introduced during curing of the laminates. The present paper provides a simplified thermomechanical analysis of residual stress state of variable stiffness laminates. Systematic parametric analyses of both cases of fiber orientation variations show that, indeed much higher buckling loads could result from the residual stresses present in such laminates.
Resumo:
Solar array rotation mechanism provides a hinged joint between the solar panel and satellite body, smooth rotation of the solar array into deployed position and its fixation in this position. After unlocking of solar panel (while in orbit), rotation bracket turns towards ready-to-work position under the action of driving spring. During deployment, once reached the required operating angle (defined by power subsystem engineer), the rotation bracket collides with the fixed bracket that is mounted on body of the satellite, to stop rotation. Due to the effect of collision force that may alter the rotation mechanism function, design of centrifugal brake is essential. At stoppage moment micro-switches activate final position sensor and a stopper locks the rotation bracket. Design of spring and centrifugal brake components, static finite element stress analysis of primary structure body of rotation mechanism at stoppage moment have been obtained. Last, reliability analysis of rotation mechanism is evaluated. The benefit of this study is to aid in the design of rotation mechanism that can be used in micro-satellite applications.
Resumo:
This project involves the construction of a dwelling in the outskirts of Dublin City. Situated in a disused quarry, the house act as an inhabited bridge, spanning between natural and man made outcrops, service structures and a shared entrance staircase. The houses language derives from the structure necessary to achieve these spans.
The section internally is modeled to present a variety of scales of spaces. More intimate living spaces and bedrooms occur in a lower, north-facing wing. Taller living spaces address the south.
Incorporating rainwater harvesting, wood-gasifying boilers, on site wind powered electrical generation, solar thermal panels and very high levels of insulation the houses are close to energy neutral. The fact that the house is constructed in massive timber construction means that 250 tonnes of carbon are sequestered in its construction. The design includes a 25yar replanting strategy to replace the existing coniferous-forested surrounds with native species in a coppiced planting strategy to allow ongoing fuel for the house, and cash crops to be sold on.
Located in an area of outstanding natural beauty the planning and design of the house involved research into patterns of rural development, the relationship between man made interventions and the natural landscape and the technology of the vernacular. This latter research forms part of the themes being explored under the Kevin Kieran Arts Council / OPW Bursary
Aims / Objectives Questions
1 To design and construct a low energy place to dwell.
2 To investigate the relationship between man-made interventions and new construction in an area of outstanding natural beauty.
3 To derive a language of construction that is contemporary in nature but refers to precedents embedded in the vernacular.
4 To develop a low-carbon form of construction that allows the construction of the house to act to sequester carbon
5 To make a contemporary addition in sympathy with the qualities of the existing site
Resumo:
Temporally resolved electron density measurements of solar flare plasmas are presented using data from the EUV Variability Experiment (EVE) on board the Solar Dynamics Observatory. The EVE spectral range contains emission lines formed between 104 and 107 K, including transitions from highly ionized iron (gsim10 MK). Using three density-sensitive Fe XXI ratios, peak electron densities of 1011.2-1012.1 cm–3 were found during four X-class flares. While previous measurements of densities at such high temperatures were made at only one point during a flaring event, EVE now allows the temporal evolution of these high-temperature densities to be determined at 10 s cadence. A comparison with GOES data revealed that the peak of the density time profiles for each line ratio correlated well with that of the emission measure time profile for each of the events studied.
Resumo:
The use of genetic algorithms (GAs) for structural optimisation is well established but little work has been reported on the inclusion of damage variables within an optimisation framework. This approach is particularly useful in the optimisation of composite structures which are prone to delamination damage. In this paper a challenging design problem is presented where the objective was to delay the catastrophic failure of a postbuckling secondary-bonded stiffened composite panel susceptible to secondary instabilities. It has been conjectured for some time that the sudden energy release associated with secondary instabilities may initiate structural failure, but this has proved difficult to observe experimentally. The optimisation methodology confirmed this indirectly by evolving a panel displaying a delayed secondary instability whilst meeting all other design requirements. This has important implication in the design of thin-skinned lightweight aerostructures which may exhibit this phenomenon.
Resumo:
Composite materials are finding increasing use on primary aerostructures to meet demanding performance targets while reducing environmental impact. This paper presents a finite-element-based preliminary optimization methodology for postbuckling stiffened panels, which takes into account damage mechanisms that lead to delamination and subsequent failure by stiffener debonding. A global-local modeling approach is adopted in which the boundary conditions on the local model are extracted directly from the global model. The optimization procedure is based on a genetic algorithm that maximizes damage resistance within the postbuckling regime. This routine is linked to a finite element package and the iterative procedure automated. For a given loading condition, the procedure optimized the stacking sequence of several areas of the panel, leading to an evolved panel that displayed superior damage resistance in comparison with nonoptimized designs.
Resumo:
This paper describes the fractographic analysis of five CFRP post-buckled skin/stringer panels that were tested to failure in compression. The detailed damage mechanisms for skin/stiffener detachment in an undamaged panel were characterised and related to the stress conditions during post-buckling; in particular the sites of peak twist (at buckling nodes) and peak bending moments (at buckling anti-nodes). The initial event was intralaminar splitting of the +45 degrees plies adjacent to the skin/stiffener interface, induced by high twist at a nodeline. This was followed by mode II delamination, parallel to +/- 45 degrees plies and then lengthwise (0 degrees) shear along the stiffener centreline. The presence of defects or damage was found to influence this failure process, leading to a reduction in strength. This research provides an insight into the processes that control post-buckled performance of stiffened panels and suggests that 2D models and element tests do not capture the true physics of skin/stiffener detachment: a full 3D approach is required.
Resumo:
A postbuckling blade-stiffened composite panel was loaded in uniaxial compression, until failure. During loading beyond initial buckling, this panel was observed to undergo a secondary instability characterised by a dynamic mode shape change. These abrupt changes cause considerable numerical difficulties using standard path-following quasi-static solution procedures in finite element analysis. Improved methods such as the arc-length-related procedures do better at traversing certain critical points along an equilibrium path but these procedures may also encounter difficulties in highly non-linear problems. This paper presents a robust, modified explicit dynamic analysis for the modelling of postbuckling structures. This method was shown to predict the mode-switch with good accuracy and is more efficient than standard explicit dynamic analysis. (C) 2003 Elsevier Science Ltd. All rights reserved.
Resumo:
Damage tolerant hat-stiffened thin-skinned composite panels with and without a centrally located circular cutout, under uniaxial compression loading, were investigated experimentally and analytically. These panels incorporated a highly postbuckling design characterised by two integral stiffeners separated by a large skin bay with a high width to skin-thickness ratio. In both configurations, the skin initially buckled into three half-wavelengths and underwent two mode-shape changes; the first a gradual mode change characterised by a central deformation with double curvature and the second a dynamic snap to five half-wavelengths. The use of standard path-following non-linear finite element analysis did not consistently capture the dynamic mode change and an approximate solution for the prediction of mode-changes using a Marguerre-type Rayleigh-Ritz energy method is presented. Shortcomings with both methods of analysis are discussed and improvements suggested. The panels failed catastrophically and their strength was limited by the local buckling strength of the hat stiffeners. (C) 2001 Elsevier Science Ltd. All rights reserved.
Resumo:
A combined experimental and analytical study of a hat-stiffened carbon-fibre composite panel loaded in uniaxial compression was investigated. A buckling mode transition was observed in the panel's skin bay which was not captured using non-linear finite-element analysis. Good correlation between experimental and numerical strain and displacement results was achieved in the prebuckling and initial postbuckling region of the loading history. A Marguerre-type Rayleigh-Ritz energy method was applied to the skin bay using representative displacement functions of permissible mode shapes to explain the mode transition phenomenon. The central criterion of this method was based on the assumption that a change in mode shape occurred such that the total potential energy of the structure was maintained at a minimum. The ultimate strength of the panel was limited by the column buckling strength of the hat-stiffeners.
Resumo:
This paper presents validated results of the optimization of cutouts in laminated carbon-fibre composite panels by adapting a recently developed optimization procedure known as Evolutionary Structural Optimization (ESO). An initial small cutout was introduced into each finite element model and elements were removed from around this cutout based on a predefined rejection criterion. In the examples presented, the limiting ply within each plate element around the cutout was determined based on the Tsai-Hill failure index. Plates with values below the product of the average Tsai-Hill number and a rejection ratio (RR) were subsequently removed. This process was iterated until a steady state was reached and the RR was then incremented by an evolutionary rate (ER). The above steps were repeated until a cutout of a desired area was achieved.