909 resultados para Sociedades anónimas
Resumo:
En este artículo se muestra una forma de programar un evaluador de expresiones matemáticas en JAVA. El programa se construye paso a paso y se explican detalladamente las partes más importantes del mismo. El evaluador consta de dos partes o módulos, el primero se encarga de convertir la expresión digitada a notación postfija que es más sencilla para el computador; el segundo es el que evalúa la expresión que se obtuvo en un valor específico. Para poder comprender y reescribir este programa se necesita tener conocimientos básicos en la programación en JAVA, sin embargo, se explicará el uso de varias primitivas utilizadas y de algunos conceptos básicos de programación.
Resumo:
El circuncentro (O), baricentro (G) y ortocentro (H) de todo triangulo estan alineados en la recta de Euler y verifican la relación mGH = 2 · mOG. En el presente artıculo se define baricentro (G) y ortocentro (H) de un cuadrilátero inscriptible de circuncentro (O) y se demuestra que dichos puntos están alineados y verifican la relación mGH = 3 · mOG.
Resumo:
La siguiente propuesta nace de la iniciativa de compartir con los colegas, una prueba formal de un resultado que nos permite hallar la distancia de un punto a una recta. El resultado se diferencia de la relación típica abordada en los libros de álgebra lineal, y su demostración se basa únicamente en conceptos de matemática básica.
Resumo:
Presentamos seis demostraciones del teorema de Napoleón y de varias propiedades que se derivan de la misma configuración. En las demostraciones recurrimos a la geometría métrica, la geometría analítica, los números complejos, la trigonometría y las isometrías, alternativamente. Algunas de dichas demostraciones –no las propiedades– son originales, otras son el desarrollo de sugerencias esbozadas en distintos textos y otras son adaptaciones de las halladas en los textos.
Resumo:
Una investigación que inicie a mediados del ano 2004, para tratar de encontrar como pudieron hacer los matemáticos de fines del siglo XVII, para encontrar la suma de algunas series de potencias infinitas.
Resumo:
Se repasa el planteo tradicional del criterio de la integral para la convergencia de series (con las hipótesis de que la función en cuestión sea continua, positiva y decreciente, y la conclusión de que la serie y la integral impropia convergen ambas o divergen ambas). Se muestran ejemplos en los que fallan una o más de las hipótesis y la conclusión del criterio falla. Se demuestra que son innecesarias las hipótesis de continuidad y positividad, y finalmente que basta con una condición aún más débil que la de que la función sea decreciente. Los resultados se aplican tanto a la equivalencia entre la convergencia de la serie y la convergencia de la integral impropia como a la fórmula para la cota del error en las sumas parciales cuando la serie converge.
Resumo:
En este artículo se presenta parte de la experiencia desarrollada en la escuela de matemática del Instituto Tecnológico de Costa Rica sobre la enseñanza de métodos numéricos, aprovechando la disponibilidad casi generalizada de la hoja electrónica Excel. La programación de algoritmos se ha hecho con la incorporación de macros; además se presenta al lector la secuencia de instrucciones necesarias para la ejecución de los distintos métodos. Aunque en principio estos materiales corresponden a un curso de nivel universitario, puede utilizarse como idea inicial para adecuar algunos de los conceptos tratados a la enseñanza de la matemática a nivel de secundaria. Tal es el caso de la graficación de funciones, aprovechando la hoja electrónica para ilustrar conceptos de dominio, rango, amplitud y período de funciones trigonométricas, etc.
Resumo:
El presente trabajo consiste en la segunda parte de una aplicación de los valores y vectores propios de una matriz, para resolver una relación de recurrencia homogénea lineal con coeficientes constantes. La aplicación abordada utiliza la teoría de matrices de Jordan, para generalizar el método de trabajo que se expuso en la primera parte de este artículo.
Resumo:
Hemos desarrollado el algoritmo usual de clasificación jerárquica ascendente en el sistema Mathematica. El usuario escoge la disimilitud según el tipo de datos que deba analizar: cuantitativos, cualitativos o binarios, así como el índice de agregación a utilizar. Se dispone de varias opciones para cada escogencia. Además, se ha implementado un gran número de manipulaciones sobre el árbol binario de clasificación, como el corte del árbol, la rotaciones, la dimensionalidad, el etiquetado, los colores, etc.
Resumo:
Este trabajo consta de dos partes: la primera presenta, de manera elemental, la teoría de los polinomios de Bernstein en una variable; la segunda esta dedicada a curvas de Bezier y q-trazadores ("q-splines"). Nos parece importante el uso que se puede dar del software Mathematica.
Resumo:
Este artículo se basa en que las nuevas tecnologías representan una alternativa para la enseñanza y el aprendizaje de las matemáticas; las calculadoras simples, las calculadoras gráficas y las computadoras han ido desplazando a la tiza y a la pizarra, pues los temas pueden ser mostrados con mayor dinamismo y agilidad. Sin embargo, un problema muy común entre los profesores es que cuentan con la tecnología para innovar, pero no saben como hacerlo, en el artículo se sugieren algunas formas de utilizar la tecnología para introducir el concepto de derivada, algunos modos de aproximarla y, por último, cómo obtener reglas generales.
Resumo:
El propósito de este trabajo es mostrar cómo se puede usar Mathematica para la generación automática de ejercicios (GAE). Se consigna una colección de programas para álgebra elemental que, mediante esta herramienta, permite dar una buena idea para extender a otras áreas.
Resumo:
La razón de esta propuesta, está fundamentada en brindar una exposición simple de una prueba de un teorema de geometría analítica, utilizado por nuestros estudiantes en la educación media y la educación media superior. Mi idea nació de la iniciativa de postular una demostración a un nivel básico, de tal forma que cualquier estudiante que conozca algunos principios generales de álgebra de polinomios, geometría analítica y trigonometría, pueda comprenderla sin mayor complicación.
Resumo:
En este artículo se presentan cuatro propiedades topológicas del conjunto de los números reales, R, que, evidentemente o no, resultan ser todas equivalentes al Axioma del Extremo Superior (AES).
Resumo:
Aún si su trabajo parece no estar vinculado con la matemática, Mathematica puede ser de su interés. Con este recurso el arduo trabajo del cálculo -numérico o simbólico- resulta cosa del pasado, el desarrollo de materiales didácticos tiene nuevas y revolucionarias herramientas, las aplicaciones de modelos matemáticos pueden producir resultados sin ocuparse de la implementación computacional de complicados algoritmos matemáticos, en suma, con las computadoras y Mathematica se multiplican las capacidades para entender, desarrollar y aplicar las matemáticas y ciencias afines.