982 resultados para SnO2 thin layers
Resumo:
Fabrication of a thin praseodymium oxide film is of great technological interest in sensor, semiconducting, and ceramic industries. It is shown for the first time that an ultrathin layer of praseodymium oxide can be deposited on tin-doped indium oxide surface (ITO) by applying a negative sweeping voltage (cathodic electrodeposition) to the aqueous solution containing Pr(NO3)(3) and H2O2 using cyclic voltammetry, followed by annealing the film at 500 S C for 1 h. X-ray diffraction suggested that the predominant phase of the film is Pr6O11 and atomic force microscopy and scanning electron microscopy characterizations indicated that this film is assembled with a monolayer coverage of spherical praseodymium oxide nanoparticles packed closely on the ITO surface. AC impedance measurements of the thin Pr6O11 film on ITO also revealed that the composite material displays a much higher electrical conductivity compared to the pure ITO. As a result, the material could suitably be used as a new chemical sensor. (c) 2006 The Electrochemical Society.
Resumo:
Praseodymium oxide as a thin film of controllable layer is known to display many unique physiochemical properties, which can be useful to ceramic, semiconductive and sensor industries. Here in this short paper, we describe a new chemical method of depositing praseodymium oxide on tin-doped indium oxide (ITO) surface using a layer-by-layer approach. The process is carried out by dipping the ITO in solutions of adsorbable polycationic chitosan and alkaline praseodymium hydroxide Pr(OH)(3) alternatively in order to build up the well-defined multi-layers. XRD suggests that the predominant form of the oxide is Pr6O11, obtained after heat treatment of the deposited ITO in static air at 500 degrees C. Microscopic studies including AFM, TEM and SEM indicate that the deposited oxide particles are uniform in size and shape (cylindrical), mesoporous and the thickness of the film can be controlled. AC impedance measurements of the deposited materials also reveal that the oxide layers display a high electrical conductivity hence suitable for sensor uses. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Self-assembly of monodisperse, silica-encapsulated, face-centered tetragonal FePt nanoparticles forms closely packed 2D arrays (see figure). Placing monodisperse FePt nanoparticles in silica nanocapsules allows the transition from a disordered face-centered cubic phase to a ferromagnetic crystalline face-centered tetragonal structure at elevated temperature without severe sintering. These materials are potential candidates for the generation of ultrahigh-density magnetic recording media.
Resumo:
Templated sol-gel encapsulation of surfactant-stabilised micelles containing metal precursor(s) with ultra-thin porous silica coating allows solvent extraction of organic based stabiliser from the composites in colloidal state hence a new method of preparing supported alloy catalysts using the inorganic silica-stabilised nano-sized, homogenously mixed, silver - platinum (Ag-Pt) colloidal particles is reported.
Resumo:
Why it is easier to cut with even the sharpest knife when 'pressing down and sliding' than when merely 'pressing down alone' is explained. A variety of cases of cutting where the blade and workpiece have different relative motions is analysed and it is shown that the greater the 'slice/push ratio' xi given by ( blade speed parallel to the cutting edge/blade speed perpendicular to the cutting edge), the lower the cutting forces. However, friction limits the reductions attainable at the highest.. The analysis is applied to the geometry of a wheel cutting device (delicatessan slicer) and experiments with a cheddar cheese and a salami using such an instrumented device confirm the general predictions. (C) 2004 Kluwer Academic Publishers.
Resumo:
New Sn-based materials have been deposited and characterised in terms of their optical and mechanical properties and compared with existing cadmium-based thin films that currently find wide spread use in the optoelectronic and semiconductor industries.
Resumo:
Increasing legislation has steadily been introduced throughout the world to restrict the use of heavy metals, particularly cadmium (Cd) and lead (Pb) in high temperature pigments, ceramics, and optoelectronic material applications. Removal of cadmium from thin-film optical and semiconductor device applications has been hampered by the absence of viable alternatives that exhibit similar properties with stability and durability. We describe a range of tin-based compounds that have been deposited and characterized in terms of their optical and mechanical properties and compare them with existing cadmium-based films that currently find widespread use in the optoelectronic and semiconductor industries. (c) 2008 Optical Society of America.
Resumo:
High spatial resolution vertical profiles of pore-water chemistry have been obtained for a peatland using diffusive equilibrium in thin films (DET) gel probes. Comparison of DET pore-water data with more traditional depth-specific sampling shows good agreement and the DET profiling method is less invasive and less likely to induce mixing of pore-waters. Chloride mass balances as water tables fell in the early summer indicate that evaporative concentration dominates and there is negligible lateral flow in the peat. Lack of lateral flow allows element budgets for the same site at different times to be compared. The high spatial resolution of sampling also enables gradients to be observed that permit calculations of vertical fluxes. Sulfate concentrations fall at two sites with net rates of 1.5 and 5.0nmol cm− 3 day− 1, likely due to a dominance of bacterial sulfate reduction, while a third site showed a net gain in sulfate due to oxidation of sulfur over the study period at an average rate of 3.4nmol cm− 3 day− 1. Behaviour of iron is closely coupled to that of sulfur; there is net removal of iron at the two sites where sulfate reduction dominates and addition of iron where oxidation dominates. The profiles demonstrate that, in addition to strong vertical redox related chemical changes, there is significant spatial heterogeneity. Whilst overall there is evidence for net reduction of sulfate within the peatland pore-waters, this can be reversed, at least temporarily, during periods of drought when sulfide oxidation with resulting acid production predominates.
Resumo:
In this paper, data from spaceborne radar, lidar and infrared radiometers on the “A-Train” of satellites are combined in a variational algorithm to retrieve ice cloud properties. The method allows a seamless retrieval between regions where both radar and lidar are sensitive to the regions where one detects the cloud. We first implement a cloud phase identification method, including identification of supercooled water layers using the lidar signal and temperature to discriminate ice from liquid. We also include rigorous calculation of errors assigned in the variational scheme. We estimate the impact of the microphysical assumptions on the algorithm when radiances are not assimilated by evaluating the impact of the change in the area-diameter and the density-diameter relationships in the retrieval of cloud properties. We show that changes to these assumptions affect the radar-only and lidar-only retrieval more than the radar-lidar retrieval, although the lidar-only extinction retrieval is only weakly affected. We also show that making use of the molecular lidar signal beyond the cloud as a constraint on optical depth, when ice clouds are sufficiently thin to allow the lidar signal to penetrate them entirely, improves the retrieved extinction. When infrared radiances are available, they provide an extra constraint and allow the extinction-to-backscatter ratio to vary linearly with height instead of being constant, which improves the vertical distribution of retrieved cloud properties.
Resumo:
In this paper, observations by a ground-based vertically pointing Doppler lidar and sonic anemometer are used to investigate the diurnal evolution of boundary-layer turbulence in cloudless, cumulus and stratocumulus conditions. When turbulence is driven primarily by surface heating, such as in cloudless and cumulus-topped boundary layers, both the vertical velocity variance and skewness follow similar profiles, on average, to previous observational studies of turbulence in convective conditions, with a peak skewness of around 0.8 in the upper third of the mixed layer. When the turbulence is driven primarily by cloud-top radiative cooling, such as in the presence of nocturnal stratocumulus, it is found that the skewness is inverted in both sign and height: its minimum value of around −0.9 occurs in the lower third of the mixed layer. The profile of variance is consistent with a cloud-top cooling rate of around 30Wm−2. This is also consistent with the evolution of the thermodynamic profile and the rate of growth of the mixed layer into the stable nocturnal boundary layer from above. In conditions where surface heating occurs simultaneously with cloud-top cooling, the skewness is found to be useful for diagnosing the source of the turbulence, suggesting that long-term Doppler lidar observations would be valuable for evaluating boundary-layer parametrization schemes. Copyright c 2009 Royal Meteorological Society
Resumo:
Asymmetric poly(styrene-b-methyl methacrylate) (PS-b-PMMA) diblock copolymers of molecular weight M-n = 29,700g mol(-1) (M-PS = 9300 g mol(-1) M-PMMA = 20,100 g mol(-1), PD = 1.15, chi(PS) = 0.323, chi(PMMA) = 0.677) and M-n = 63,900 g mol(-1) (M-PS = 50,500 g mol(-1), M-PMMA = 13,400 g mol(-1), PD = 1.18, chi(PS) = 0.790, chi(PMMA) = 0.210) were prepared via reversible addition-fragmentation chain transfer (RAFT) polymerization. Atomic force microscopy (AFM) was used to investigate the surface structure of thin films, prepared by spin-coating the diblock copolymers on a silicon substrate. We show that the nanostructure of the diblock copolymer depends on the molecular weight and volume fraction of the diblock copolymers. We observed a perpendicular lamellar structure for the high molar mass sample and a hexagonal-packed cylindrical patterning for the lower molar mass one. Small-angle X-ray scattering investigation of these samples without annealing did not reveal any ordered structure. Annealing of PS-b-PMMA samples at 160 degrees C for 24 h led to a change in surface structure.
Resumo:
Pulsed lidars are commonly used to retrieve vertical distributions of cloud and aerosol layers. It is widely believed that lidar cloud retrievals (other than cloud base altitude) are limited to optically thin clouds. Here, we demonstrate that lidars can retrieve optical depths of thick clouds using solar background light as a signal, rather than (as now) merely a noise to be subtracted. Validations against other instruments show that retrieved cloud optical depths agree within 10%–15% for overcast stratus and broken clouds. In fact, for broken cloud situations, one can retrieve not only the aerosol properties in clear-sky periods using lidar signals, but also the optical depth of thick clouds in cloudy periods using solar background signals. This indicates that, in general, it may be possible to retrieve both aerosol and cloud properties using a single lidar. Thus, lidar observations have great untapped potential to study interactions between clouds and aerosols.
Resumo:
Many clouds important to the Earth’s energy balance contain small amounts of liquid water, yet despite many improvements, large differences in retrievals of their liquid water amount and particle size still must be resolved.
Resumo:
Coatings and filters for spaceflight far-infrared components require a robust, non-absorptive low-index thin film material to contrast with the typically higher refractive index infrared materials. Barium fluoride is one such material for the 10 to 20µm wavelength infrared region, however its optical and mechanical properties vary depending on the process used to deposit it in thin film form. Thin films of dielectric produced by thermal evaporation are well documented as having a lower packing density and refractive index than bulk material. The porous and columnar micro structure of these films causes possible deterioration of their performance in varied environmental conditions, primarily because of the moisture absorption. Dielectric thin films produced by the more novel technique of ion-beam sputtering are denser with no columnar micro structure and have a packing density and refractive index similar to the bulk material. A comparative study of Barium Fluoride (BaF2) thin films made by conventional thermal evaporation and ion-beam sputtering is reported. Films of similar thicknesses are deposited on Cadmium Telluride and Germanium substrates. The optical and mechanical properties of these films are then examined. The refractive index n of the films is obtained from applying the modified Manifacier's evvelope method to the spectral measurements made on a Perkin Elmer 580 spectrophotometer. An estimate is also made of the value of the extinction coefficient k in the infrared wavelength transparent region of the thin film. In order to study the mechanical properties of the BaF2 films, and evaluate their usefulness in spaceflight infrared filters and coatings, the thin film samples are subjected to MIL-F-48616 environmental tests. Comparisons are made of their performance under these tests.
Resumo:
A synthesis method is outlined for the design of broadband anti-reflection coatings for use in spaceborne infrared optics. The Golden Section optimisation routine is used to make a search, using designated non-absorptive dielectric thin film combinations, for the coating design which fulfils the required spectral requirements using the least number of layers and different materials. Three examples are given of coatings designed by this method : (I) 1µm to 12µm anti-reflection coating on Zinc Sulphide using Zinc Sulphide and Yttrium Fluoride thin film materials. (ii) 2µm to 14µm anti-reflection coating on Germanium using Germanium and Ytterbium Fluoride thin film materials. (iii) 6µm to 17µm anti-reflection coating on Germanium using Lead Telluride, Zinc Selenide and Barium Fluoride. The measured spectral performance of the manufactured 6µm to 17µm coating on Germanium is given. This is the anti-reflection coating for the germanium optics in the NASA Cassini Orbiter CIRS instrument.