999 resultados para Sludge sedimentation rate
Resumo:
Hudson Strait (HS) Heinrich Events, ice-rafting events in the North Atlantic originating from the Laurentide ice sheet (LIS), are among the most dramatic examples of millennial-scale climate variability and have a large influence on global climate. However, it is debated as to whether the occurrence of HS Heinrich Events in the (eastern) North Atlantic in the geological record depends on greater ice discharge, or simply from the longer survival of icebergs in cold waters. Using sediments from Integrated Ocean Drilling Program (IODP) Site U1313 in the North Atlantic spanning the period between 960 and 320 ka, we show that sea surface temperatures (SSTs) did not control the first occurrence of HS Heinrich(-like) Events in the sedimentary record. Using mineralogy and organic geochemistry to determine the characteristics of ice-rafting debris (IRD), we detect the first HS Heinrich(-like) Event in our record around 643 ka (Marine Isotope Stage (MIS) 16), which is similar as previously reported for Site U1308. However, the accompanying high-resolution alkenone-based SST record demonstrates that the first HS Heinrich(-like) Event did not coincide with low SSTs. Thus, the HS Heinrich(-like) Events do indicate enhanced ice discharge from the LIS at the end of the Mid-Pleistocene Transition, not simply the survivability of icebergs due to cold conditions in the North Atlantic.
Resumo:
We investigate changes in the delivery and oceanic transport of Amazon sediments related to terrestrial climate variations over the last 250 ka. We present high-resolution geochemical records from four marine sediment cores located between 5 and 12° N along the northern South American margin. The Amazon River is the sole source of terrigenous material for sites at 5 and 9° N, while the core at 12° N receives a mixture of Amazon and Orinoco detrital particles. Using an endmember unmixing model, we estimated the relative proportions of Amazon Andean material ("%-Andes", at 5 and 9° N) and of Amazon material ("%-Amazon", at 12° N) within the terrigenous fraction. The %-Andes and %-Amazon records exhibit significant precessional variations over the last 250 ka that are more pronounced during interglacials in comparison to glacial periods. High %-Andes values observed during periods of high austral summer insolation reflect the increased delivery of suspended sediments by Andean tributaries and enhanced Amazonian precipitation, in agreement with western Amazonian speleothem records. Increased Amazonian rainfall reflects the intensification of the South American monsoon in response to enhanced land-ocean thermal gradient and moisture convergence. However, low %-Amazon values obtained at 12° N during the same periods seem to contradict the increased delivery of Amazon sediments. We propose that reorganizations in surface ocean currents modulate the northwestward transport of Amazon material. In agreement with published records, the seasonal North Brazil Current retroflection is intensified (or prolonged in duration) during cold substages of the last 250 ka (which correspond to intervals of high DJF or low JJA insolation) and deflects eastward the Amazon sediment and freshwater plume.
Resumo:
At ODP Site 983, relative geomagnetic paleointensity and planktic and benthic delta18O records have been acquired for the last 350 kyr. The mean sedimentation rate in this interval is 11.3 cm/kyr. Magnetic properties and hysteresis ratios indicate that pseudo-single domain magnetite is the remanence carrier. Volume susceptibility (kappa), anhysteretic (ARM) and isothermal (IRM) remanence values vary by a factor of 3-4, well within the criteria usually cited for paleointensity studies. Natural remanent magnetization (NRM) is normalized by ARM and IRM to acquire the paleointensity proxy. Arithmetic means of NRM/ARM and NRM/IRM, calculated for five demagnetization steps in the 25-45 mT range, constitute the relative paleointensity estimates. Some paleointensity lows (particularly those at ~40, ~120 and ~188 ka) are associated with directional excursions of the field, especially the event at ~188 ka (referred to here as the Iceland Basin Event) that constitutes a short-lived polarity reversal. For the last 200 kyr, the records can be correlated with other high-resolution paleointensity records such as those from the Labrador Sea, Mediterranean/Somali Basin and Sulu Sea, implying that the millennial scale features are globally synchronous. A labeling system for paleointensity features is proposed that ties prominent highs and lows to oxygen isotope stages.
Resumo:
High resolution palynological and geochemical data of sediment core GeoB 3910-2 (located offshore Northeast Brazil) spanning the period between 19 600 and 14 500 calibrated year bp (19.6-14.5 ka) show a land-cover change in the catchment area of local rivers in two steps related to changes in precipitation associated with Heinrich Event 1 (H1 stadial). At the end of the last glacial maximum, the landscape in semi-arid Northeast Brazil was dominated by a very dry type of caatinga vegetation, mainly composed of grasslands with some herbs and shrubs. After 18 ka, considerably more humid conditions are suggested by changes in the vegetation and by Corg and C/N data indicative of fluvial erosion. The caatinga became wetter and along lakes and rivers, sedges and gallery forest expanded. The most humid period was recorded between 16.5 and 15 ka, when humid gallery (and floodplain) forest and even small patches of mountainous Atlantic rain forest occurred together with dry forest, the latter being considered as a rather lush type of caatinga vegetation. During this humid phase erosion decreased as less lithogenic material and more organic terrestrial material were deposited on the continental slope of northern Brazil. After 15 ka arid conditions returned. During the humid second phase of the H1 stadial, a rich variety of landscapes existed in Northeast Brazil and during the drier periods small pockets of forest could probably survive in favorable spots, which would have increased the resilience of the forest to climate change.
Resumo:
Geochemical and rock magnetic investigations of sediments from three sites on the continental margin off Argentina and Uruguay were carried out to study diagenetic alteration of iron minerals driven by anaerobic oxidation of methane (AOM). The western Argentine Basin represents a suitable sedimentary environment to study nonsteady-state processes because it is characterized by highly dynamic depositional conditions. Mineralogic and bulk solid phase data document that the sediment mainly consists of terrigenous material with high contents of iron minerals. As a typical feature of these deposits, distinct minima in magnetic susceptibility (k) are observed. Pore water data reveal that these minima in susceptibility coincide with the current depth of the sulfate/methane transition (SMT) where HS- is generated by the process of AOM. The released HS- reacts with the abundant iron (oxyhydr)oxides resulting in the precipitation of iron sulfides accompanied by a nearly complete loss of magnetic susceptibility. Modeling of geochemical data suggest that the magnetic record in this area is highly influenced by a drastic change in mean sedimentation rate (SR) which occurred during the Pleistocene/Holocene transition. We assume that the strong decrease in mean SR encountered during this glacial/interglacial transition induced a fixation of the SMT at a specific depth. The stagnation has obviously enhanced diagenetic dissolution of iron (oxyhydr)oxides within a distinct sediment interval. This assumption was further substantiated by numerical modeling in which the mean SR was decreased from 100 cm/kyr during glacial times to 5 cm/kyr in the Holocene and the methane flux from below was fixed to a constant value. To obtain the observed geochemical and magnetic patterns, the SMT must remain at a fixed position for ~9000 yrs. This calculated value closely correlates to the timing of the Pleistocene/Holocene transition. The results of the model show additionally that a constant high mean SR would cause a concave-up profile of pore water sulfate under steady state conditions.
Resumo:
High- and low-latitude forcing of terrestrial African paleoclimate variability is demonstrated using 900 ka eolian and biogenic component records from Ocean Drilling Program site 663 in the eastern equatorial Atlantic. Terrigenous (eolian dust) and phytolith (savannah grass cuticle) accumulation rate records vary predominantly at 100 and 41 kyr periodicities and spectral phase estimates implicate high-latitude forcing. The abundance of freshwater diatoms (Melosira) transported from dry African lake beds varies coherently at 23-19 kyr orbital periodicities and at a phasing which implicates low-latitude precessional monsoon forcing. Modeling studies demonstrate that African climate is sensitive to both high- and low-latitude boundary conditions. African monsoon intensity is modulated by direct insolation variations due to orbital precession, whereas remote high-latitude forcing can be related to cool North Atlantic sea surface temperatures (SSTs) which promote African aridity and enhance dust-transporting wind speeds. The site 663 terrigenous and phytolith records covary with North Atlantic SST variability at 41 °N (site 607). We suggest that Pleistocene African climate has responded to both high-latitude North Atlantic SST variability as well as low-latitude precessional monsoon forcing; the high-latitude influence dominates the sedimentary record. Prior to circa 2.4 Ma, terrigenous variations occurred primarily at precessional periodicities (23-19 kyr), indicating that African climate was largely controlled by low-latitude insolation variations prior to the onset of high-amplitude glacial-interglacial climate change.
Resumo:
Middle/late Miocene to early Pliocene sedimentary sequences along the continental margin of southwest Africa have changes that correspond to the carbonate crash (12-9 Ma) and biogenic bloom events (~7-4 Ma) described in the equatorial Pacific by Farrell et al. (1995, doi:10.2973/odp.proc.sr.138.143.1995). To explore the origins of these changes, we analyzed the carbon and coarse fraction contents of sediments from ODP Sites 1085, 1086, and 1087 at a time resolution of 5 to 30 kyr. Several major drops in CaCO3 concentration between 12 and 9 Ma are caused by dilution from major increases in clastic input from the Oranje River during global sea level regressions. Abundant pyrite crystals and good preservation of fish debris reflect low oxygenation of bottom/pore waters. Regional productivity was enhanced during the time equivalent to the carbonate crash period. Higher benthic/planktic foraminiferal ratios indicate that CaCO3 dissolution at Site 1085 peaked between 9 to 7 Ma, which was after the global carbonate crash. This period of enhanced dissolution suggests that Site 1085 was located within a low-oxygen water mass that dissolved CaCO3 more easily than North Atlantic Deep Water, which began to bathe this site at 7 Ma. At 7 to 6 Ma, the onset of the biogenic bloom, increases and variations in total organic carbon and benthic foraminiferal accumulation rates show that paleoproductivity increased significantly above values observed during the carbonate crash period and fluctuated widely. We attribute the late Miocene paleoproductivity increase off southwest Africa to ocean-wide increases in nutrient supply and delivery.
Resumo:
Petrographical and geochemical studies of Neogene marine sediments from the Oman Sea (Leg 117, Sites 720, 724, 726 and 730), show a close relationship between the nature and amount of the organic matter, and the degree of degradation of organic matter by sulfate reduction, i.e. pyritization. Petrographically, three major pyritization types were observed: (1) Finely dispersed pyrite framboids in sediments from Oman Margin and Indus Fan, enriched in autochthonous marine organic matter. (2) Infilling of pores by massive pyrite crystals in Oman Margin sediments with a low TOC and a high microfossil content. (3) Pyrite mineralization of lignaceous fragments in organic-depleted sediments from the Indus Fan leading to more massive pyrite. Geochemically, we can define a sulfate reduction index (SRI) as the percentage of initial organic carbon versus that of residual organic carbon. Finely laminated Pliocene-Pleistocene sediments from the Oman Margin exclusively contain organic matter deriving from organic phytoplankton, for which the quantity (TOC) positively correlates with the geochemical quality (Hydrogen Index). We think that the occurrence of this residual organic matter is linked mainly to a high primary paleo-productivity. The intensity of sulfate reduction is constant for sediments with TOC up to 2% and becomes more important when organic input decreases. This degradation process can destroy up to 50% of the initial organic matter, but is not sufficient to explain some of the encountered very low TOC values. It can be seen that sharp increases of certain plankton species (with mineral skeletons) are responsible for a pronounced degradation of organic matter, due to increased sulfate reduction. In that case, the organic matter may be strongly degraded (high SRI), although deposited in an oxygen-depleted environment. Conversely, Miocene-Pliocene sediments contain an autochthonous organic matter that is typical of both low productivity and oxic processes; their very low sulfate reduction index indicates that very little metabolizable organic matter was initially present.
Resumo:
Seventy-nine interstitial water samples from six sites (Ocean Drilling Program Sites 1119-1124) from the southwestern Pacific Ocean have been analyzed for stable isotopes of dissolved sulfate (34S), along with major and minor ions. Sulfate from the interstitial fluids (34S values between +20.7 and +57.5 vs. the Vienna-Canyon Diablo troilite standard) was enriched in 34S with respect to modern seawater (34S +20.6), indicating that differing amounts of microbial sulfate reduction took place at all investigated sites. Microbial sulfate reduction was found at all sites, the intensity depending on the availability of organic matter, which is controlled by paleosedimentation conditions (e.g., sedimentation rate and presence of turbidites). In addition, total reduced inorganic sulfur (essentially pyrite) as a product of microbial sulfate reduction was quantified in selected sediments from Site 1119.
Resumo:
In the collective monograph results of geological and geophysical studies in the Tadjura Rift carried out by conventional outboard instruments and from deep/sea manned submersibles "Pisces" in winter 1983-1984 are reported. Main features of rift tectonics, geology, petrology, and geochemistry of basalts from the rift are under consideration. An emphasis is made on lithology, stratigraphy, and geochemistry of bottom sediments. Roles of terrigenous, edafogenic, biogenic, and hydrothermal components in formation of bottom sediments from the rift zone are shown.
Resumo:
Detailed sedimentological investigations were performed on sediments from DSDP-Site 594 (Chatham Rise, east of New Zealand) in order to reconstruct the evolution of paleoclimate and paleoceanographic conditions in the Southwest Pacific during the last 6 million years. The results can be summarized as follows: (1) High accumulation rates of biogenic opal and carbonate and the dominance of smectites in the clay fraction suggest increased oceanic productivity and an equable dominantly humid climate during the late Miocene. (2) During Pliocene times, decreasing contents of smectites and increasing feldspar/quartz ratios point to an aridification in the source area of the terrigenous sediments, culmunating near 2.5 Ma. At that time, accumulation rates of terrigenous components distinctly increased probably caused by increased sediment supply due to intensified atmospheric and oceanic circulation, lowered sea level, and decreased vegetation cover. (3) A hiatus (1.45 to 0.73 Ma) suggests intensified intermediate-water circulation. (4) Major glacial/interglacial cycles characterize the upper 0.73 Ma. During glacial times, oceanic productivity and terrigenous sediment supply was distinctly increased because of intensified atmospheric and oceanic circulations and lowered sea level, whereas during interglacials productivity and terrigenous sediment supply were reduced. (5) An increased content of amphibols in the sediments of Site 594 indicates increased volcanic activities during the last 4.25 Ma.