936 resultados para Slope
Resumo:
Shore environments of Lakes Victoria and Kyoga with potential for the establishment and proliferation of water hyacinth were identified. They are characterised by: (i) shelter from violent off-shore and along-the-shore wind and wave action (ii) flat or gentle slope under relatively shallow water, and (iii) a muddy bottom rich in organic matter. Such environments are strongly associated with emergent macrophytes of papyrus, Vossia sp and, at times Typha sp where Pistia stratiotes, species of ceratophyllum, myriophylum and nymphaea also occur. In Lake Kyoga association with Vossia sp facilitated establishment of water hyacinth even along wind-swept shores and promoted extension of mats of the two machrophytes into the open lake. Urgent research on water hyacinth is proposed in the areas of nutrient relations, weed biology and on its impact on the biodiversity resource, with particular emphasis on the fishery component. Findings from the research could facilitate formulation of weed control options and alternative resource management strategies. A regional approach to address the water hyacinth menace is highly recommended.
Resumo:
A short channel vertical thin film transistor (VTFT) with 30 nm SiN x gate dielectric is reported for low voltage, high-resolution active matrix applications. The device demonstrates an ON/OFF current ratio as high as 10 9, leakage current in the fA range, and a sub-threshold slope steeper than 0.23 V/dec exhibiting a marked improvement with scaling of the gate dielectric thickness. © 2011 American Institute of Physics.
Resumo:
In this paper, we review our recent experimental work on coherent and blue phase liquid crystal lasers.We will present results on thin-film photonic band edge lasing devices using dye-doped low molar mass liquid crystals in self-organised chiral nematic and blue phases. We show that high Q-factor lasers can be achieved in these materials and demonstrate that a single mode output with a very narrow line width can be readily achievable in well-aligned mono-domain samples. Further, we have found that the performance of the laser, i.e. the slope efficiency and the excitation threshold, are dependent upon the physical parameters of the low molar mass chiral nematic liquid crystals. Specifically, slope efficiencies greater than 60% could be achieved depending upon the materials used and the device geometry employed. We will discuss the important parameters of the liquid crystal host/dye guest materials and device configuration that are needed to achieve such high slope efficiencies. Further we demonstrate how the wavelength of the laser can be tuned using an in-plane electric field in a direction perpendicular to the helix axis via a flexoelectric mechanism as well as thermally using thermochromic effects. We will then briefly outline data on room temperature blue phase lasers and further show how liquid crystal/lenslet arrays have been used to demonstrate 2D laser emission of any desired wavelength. Finally, we present preliminary data on LED/incoherent pumping of RG liquid crystal lasers leading to a continuous wave output. © 2009 SPIE.
Resumo:
The self-organization of the helical structure of chiral nematic liquid crystals combined with their sensitivity to electric fields makes them particularly interesting for low-threshold, wavelength tunable laser devices. We have studied these organic lasers in detail, ranging from the influence specific macroscopic properties, such as birefringence and order parameter, have on the output characteristics, to practical systems in the form of two-dimensional arrays, double-pass geometries and paintable lasers. Furthermore, even though chiral nematics are responsive to electric fields there is no facile means by which the helix periodicity can be adjusted, thereby allowing laser wavelength tuning, without adversely affecting the optical quality of the resonator. Therefore, in addition to studying the liquid crystal lasers, we have focused on finding a novel method with which to alter the periodicity of a chiral nematic using electric fields without inducing defects and degrading the optical quality factor of the resonator. This paper presents an overview of our research, describing (i) the correlation between laser output and material properties,(ii) the importance of the gain medium,(iii) multicolor laser arrays, and (iv) high slope efficiency (>60%) silicon back-plane devices. Overall we conclude that these materials have great potential for use in versatile organic laser systems.
Resumo:
Data on sexual behavior were collected in six groups of semi-commensal Macaca thibetana along the trail on the slope habitat between 1987 and 1989. Ignoring the common items such as mounting, presenting etc., 20 categories of sexual behavior were described. Most of the descriptions were likely to have enlarged the behavior repertoire reported in macaques, showing a great complexity of sociosexual interactions under the principally natural condition. A great diversity of grouping appeared in the mating season. The copulatory pattern was found to be the serial type contrary to previous speculation, and the mount-to-ejaculation ratio was higher in the central subgroup, as compared with the far-peripheral adult subgroup (FAS) with less male and female rivals. An age-class subdivision of sexually active males made it possible to show that the young adult male immigrants were the most active class in sexual activity. Subgrouping form FAS was a ''space-segregation'' tactic of mating for the losers of both sexes in the competition. Some parameters of copulation were also documented.
Resumo:
Data on sleeping site selection were collected for a group of black-and-white snub-nosed monkeys (Rhinopithecus bieti; around 80) at Mt. Fuhe, Yunnan, China (99degrees20'E, 26degrees25'N, about 3,000 m asl) from November 2000 to January 2002. At the site mainly three vegetation types were present in an elevation-ascending order: deciduous broad leaf forest, mixed coniferous and broad leaf forest, and dark coniferous forest. In addition, bamboo forest presented in areas burned in 1958. Sleeping sites (n = 10) were located in the coniferous forest, where trees were the tallest, bottommost branches were the highest, the diameter of crowns was the second largest, and the gradient of the ground was the steepest. Monkeys usually kept quiet during entering and staying at a sleeping site. The site choice and the quietness may be tactics to avoid potential predators. In the coniferous forest, however, monkeys did not sleep in the valley bottom where trees were the largest, but frequently slept in the middle of the slope towards the east/southeast, in the shadow of ridges in three other directions, to avoid strong wind and to access sunshine; in winter-spring, they ranged in a more southern and lower area than in summer-autumn. These may be behavioral strategies to minimize energy stress in the cold habitat. Monkeys often slept in the same sleeping site on consecutive nights, which reflected a reduced pressure of predation probably due to either the effectiveness of anti-predation through sleeping site selection, or the population decline of predators with increasing human activities in the habitat. The group's behavioral responses to interactive and sometimes conflicting traits of the habitat are site-specific and conform to expectations for a temperate zone primate.
Resumo:
We report on novel liquid crystals with extremely large flexoelectric coefficients in a range of ultra-fast photonic modes, namely 1) the uniform lying helix, that leads to in-plain switching, birefringence phase devices with 100 μs switching times at low fields, i.e.2-5 V/μm, and analogue or grey scale capability, 2) the uniform standing helix, using planar surface alignment and in-plane fields, with sub ms response times and optical contrasts in excess of 5000:1 with a perfect optically isotropic or black "off state", 3) the wide temperature range blue phase that leads to field controlled reflective color, 4) chiral nematic optical reflectors electric field tunable over a wide wavelength range and 5) high slope efficiency, wide wavelength range tunable narrow linewidth microscopic liquid crystal lasers. © 2011 Materials Research Society.
Resumo:
Landslides occur both onshore and offshore, however little attention has been given to offshore landslides (submarine landslides). The unique characteristics of submarine landslides include large mass movements and long travel distances at very gentle slopes. Submarine landslides have significant impacts and consequences on offshore and coastal facilities. This paper presents data from a series of centrifuge tests simulating submarine landslide flows on a very gentle slope. Experiments were conducted at different gravity levels to understand the scaling laws involved in simulating submarine landslide flows through centrifuge modelling. The slope was instrumented with miniature sensors for measurements of pore pressure beneath the flow. A series of digital cameras were used to capture the flow in flight. The results provide a better understanding of the scaling laws that needs to be adopted for centrifuge experiments involving submarine landslide flows and gives an insight into the flow mechanisms. © 2010 Taylor & Francis Group, London.
Resumo:
Concerns over loosely compacted fill slopes stability in Hong Kong arouse in the past few decades, since the Sau Mau Ping disasters in 1972 and 1976. Research conducted on loose fill slopes in the past few years aimed to understand the failure mechanisms of a loosely compacted fill slope. Recently, layering effect has been hypothesised to be a possible condition in the fill slopes leading to a fast flowslide triggered by a rise of water table. Centrifuge experiments were conducted to investigate the layering effect on a model granular slope and hence to determine the triggering mechanisms of seepage induced slope failure. Test results showed that slope failure can be easily triggered in layered fill model slopes when seepage is restricted and localised pore water pressure is allowed to build up within the slope. © 2006 Taylor & Francis Group, London.
Resumo:
Interbedded layers of glacial deposits and marine or glacimarine clay layers are a common feature of offshore sediment. Typically, offshore marine clays are lightly overconsolidated sensitive clay. Some case histories on submarine landslides show that the slip surface passes through these marine clay layers. In this paper a model is proposed for post-peak strain softening behavior of marine sensitive clay. The slope failure mechanism is examined using the concept of shear band propagation. It is shown that shear band propagation and post-peak stress-strain behavior of clay layers are two major factors in submarine slope stability analysis. Copyright © 2012 by the International Society of Offshore and Polar Engineers (ISOPE).
Resumo:
A newly developed computer model, which solves the horizontal two-dimensional Boussinesq equations using a total variation diminishing Lax-Wendroff scheme, has been used to study the runup of solitary waves, with various heights, on idealized conical islands consisting of side slopes of different angles. This numerical model has first been validated against high-quality laboratory measurements of solitary wave runups on a uniform plane slope and on an isoliated conical island, with satisfactory agreement being achieved. An extensive parametric study concerning the effects of the wave height and island slope on the solitary wave runup has subsequently been carried out. Strong wave shoaling and diffraction effects have been observed for all the cases investigated. The relationship between the runup height and wave height has been obtained and compared with that for the case on uniform plane slopes. It has been found that the runup on a conical island is generally lower than that on a uniform plane slope, as a result of the two-dimensional effect. The correlation between the runup with the side slope of an island has also been identified, with higher runups on milder slopes. This comprehensive study on the soliton runup on islands is relevant to the protection of coastal and inland regions from extreme wave attacks. © the Coastal Education & Research Foundation 2012.
Resumo:
We fabricate a saturable absorber mirror by coating a graphenefilm on an output coupler mirror. This is then used to obtain Q-switched mode-locking from a diode-pumped linear cavity channel waveguide laser inscribed in Ytterbium-doped Bismuthate Glass. The laser produces 1.06 ps pulses at ∼1039 nm, with a 1.5 GHz repetition rate, 48% slope efficiency and 202 mW average output power. This performance is due to the combination of the graphene saturable absorber and the high quality optical waveguides in the laser glass. © 2013 Optical Society of America.
Resumo:
We have conducted triaxial deformation experiments along different loading paths on prism sediments from the Nankai Trough. Different load paths of isotropic loading, uniaxial strain loading, triaxial compression (at constant confining pressure, Pc), undrained Pc reduction, drained Pc reduction, and triaxial unloading at constant Pc, were used to understand the evolution of mechanical and hydraulic properties under complicated stress states and loading histories in accretionary subduction zones. Five deformation experiments were conducted on three sediment core samples for the Nankai prism, specifically from older accreted sediments at the forearc basin, underthrust slope sediments beneath the megasplay fault, and overthrust Upper Shikoku Basin sediments along the frontal thrust. Yield envelopes for each sample were constructed based on the stress paths of Pc-reduction using the modified Cam-clay model, and in situ stress states of the prism were constrained using the results from the other load paths and accounting for horizontal stress. Results suggest that the sediments in the vicinity of the megasplay fault and frontal thrust are highly overconsolidated, and thus likely to deform brittle rather than ductile. The porosity of sediments decreases as the yield envelope expands, while the reduction in permeability mainly depends on the effective mean stress before yield, and the differential stress after yield. An improved understanding of sediment yield strength and hydromechanical properties along different load paths is necessary to treat accurately the coupling of deformation and fluid flow in accretionary subduction zones. © 2012 American Geophysical Union All Rights Reserved.
Resumo:
The objective of the author's on-going research is to explore the feasibility of determining reliable in situ curves of shear modulus as a function of strain using the dynamic test. The purpose of this paper is limited to investigating what material stiffness is measured from a dynamic test, focusing on the harmonic excitation test. A one-dimensional discrete model with nonlinear material properties is used for this purpose. When a sinusoidal load is applied, the cross-correlation of signals from different depths estimates a wave velocity close to the one calculated from the secant modulus in the stress-strain loops under steady-state conditions. The variables that contributed to changing the average slope of the stress-strain loop also influence the estimate of the wave velocity from cross-correlation. Copyright ASCE 2007.
Resumo:
The response of submerged slopes on the continental shelf to seismic or storm loading has become an important element in the risk assessment for offshore structures and "local" tsunami hazards worldwide. The geological profile of these slopes typically includes normally consolidated to lightly overconsolidated soft cohesive soils with layer thickness ranging from a few meters to hundreds of meters. The factor of safety obtained from pseudo-static analyses is not always a useful measure for evaluating the slope response, since values less than one do not necessarily imply slope failure with large movements of the soil mass. This paper addresses the relative importance of different factors affecting the response of submerged slopes during seismic loading. The analyses use a dynamic finite element code which includes a constitutive law describing the anisotropic stress-strain-strength behavior of normally consolidated to lightly overconsolidated clays. The model also incorporates anisotropic hardening to describe the effect of different shear strain and stress histories as well as bounding surface principles to provide realistic descriptions of the accumulation of the plastic strains and excess pore pressure during successive loading cycles. The paper presents results from parametric site response analyses on slope geometry and layering, soil material parameters, and input ground motion characteristics. The predicted maximum shear strains, permanent deformations, displacement time histories and maximum excess pore pressure development provide insight of slope performance during a seismic event. © 2006 Author(s). This work is licensed under a Creative Commons License.