1000 resultados para Sistemi energetici gas vapore impianto combinato energia
Resumo:
The use of well characterized recombinant or purified protein antigens (Ag) for vaccination is of interest for safety reasons and in the case where inactivated pathogens are not available (cancer, allergy). However it requires the addition of adjuvants such as Ag carrier or immune stimulators to potentiate their immunogenicity. In this study, we demonstrated that gas-filled microbubbles (MB) can serve as an efficient Ag delivery system to promote phagocytosis of the model Ag ovalbumin (OVA) without the need of ultrasound application. Once internalized by DC, OVA was processed and presented to both CD4 and CD8 T cells in vitro; such observations were coupled with the capacity of MB to activate DC. In vivo administration of MB-associated OVA in naïve wild-type Balb/c mice resulted in the induction of OVA-specific antibody and T cell responses. Detailed characterization of the generated immune response demonstrated the production of both IgG1 and IgG2a serum antibodies, as well as the secretion of IFN-γ and IL-10 by splenocytes. Interestingly, similar results were obtained with human DC in regards of Ag delivery and cell activation. Therefore, the data presented here settle the proof of principle for the further evaluation of MB-based immunomodulation studies.
Resumo:
This study was designed to evaluate the potential of gas-filled microbubbles (MB) to be internalized by antigen-presenting cells (APC). Fluorescently labeled MB were prepared, thus permitting to track binding to, and internalization in, APC. Both human and mouse cells, including monocytes and dendritic cells (DC), prove capable to phagocyte MB in vitro. Observation by confocal laser scanning microscopy showed that interaction between MB and target cells resulted in a rapid internalization in cellular compartments and to a lesser extent in the cytoplasm. Capture of MB by APC resulted in phagolysosomal targeting as verified by double staining with anti-lysosome-associated membrane protein-1 monoclonal antibody and decrease of internalization by phagocytosis inhibitors. Fluorescent MB injected subcutaneously (s.c.) in mice were found to be associated with CD11c(+)DC in lymph nodes draining the injection sites 24 h after administration. Altogether, our study demonstrates that MB can successfully target APC both in vitro and in vivo, and thus may serve as a potent Ag delivery system without requirement for ultrasound-based sonoporation. This adds to the potential of applications of MB already extensively used for diagnostic imaging in humans.
Resumo:
A capacidade máxima de adsorção de fósforo (CMAP) é um parâmetro bastante útil para caracterizar a capacidade de adsorção de fósforo (P) do solo e, por isso, o modelo de Langmuir, que possibilita essa estimativa, é bastante difundido. Porém, se o ajuste da equação for realizado por modelos não lineares ou linearizados, ou se forem escolhidos modelos de região única ou múltiplas, nem sempre os valores estimados da CMAP e da constante de energia de ligação (k) são semelhantes. O objetivo deste trabalho foi avaliar o efeito do uso de diferentes métodos de ajuste do modelo de Langmuir sobre os valores estimados de CMAP e k. Para isso, utilizouse um único solo de alta capacidade de adsorção de P, o qual foi misturado a quantidades crescentes de areia lavada, construindo-se sistemas com capacidades de sorção crescentes, mas com a fase sólida constituída da mesma mineralogia. Foi utilizado solo do horizonte B de um Latossolo Bruno com 800 g kg-1 de argila, o qual foi misturado com areia em quantidades para obterem-se solos artificiais com 0, 200, 400, 600 e 800 g kg-1 de argila. Esses solos artificiais foram incubados por 30 dias com calcário para elevar o pH(H2O) até 6,0 e, após, foram secos em estufa e peneirados. Foram realizadas as isotermas de adsorção e os dados ajustados pelo modelo de Langmuir, usando os seguintes métodos: NLin - não linear com região única; L-1R - linearização com região única; L-2RG - linearização com duas regiões, ajuste gráfico; L-3RG - linearização com três regiões, ajuste gráfico; L-2RE linerização com duas regiões, ajuste estatístico. Os resultados evidenciaram que todos os métodos utilizados estimaram valores de CMAP proporcionais ao teor de argila dos solos e poderiam ser usados para caracterizar os solos. Contudo, quando utilizados ajustes com mais de uma região de adsorção, os valores da CMAP para a última região foram sensivelmente superiores àqueles observados após a incubação do solo com doses de P em um teste adicional. Isso indica que a CMAP da última região deve ser evitada como caracterizadora da capacidade de adsorção do solo. Conforme era esperado, os valores de k foram proporcionais aos teores de argila do solo na primeira (ou única) região dos modelos linearizados; contudo, não seguiram essa tendência no modelo não linear, recomendando-se cautela na interpretação da constante k ajustada por modelos não lineares.
Greenhouse Gas and Nitrogen Fertilizer Scenarios for U.S. Agriculture and Global Biofuels, June 2011
Resumo:
This analysis uses the 2011 FAPRI-CARD (Food and Agricultural Policy Research Institute–Center for Agricultural and Rural Development) baseline to evaluate the impact of four alternative scenarios on U.S. and world agricultural markets, as well as on world fertilizer use and world agricultural greenhouse gas emissions. A key assumption in the 2011 baseline is that ethanol support policies disappear in 2012. The baseline also assumes that existing biofuel mandates remain in place and are binding. Two of the scenarios are adverse supply shocks, the first being a 10% increase in the price of nitrogen fertilizer in the United States, and the second, a reversion of cropland into forestland. The third scenario examines how lower energy prices would impact world agriculture. The fourth scenario reintroduces biofuel tax credits and duties. Given that the baseline excludes these policies, the fourth scenario is an attempt to understand the impact of these policies under the market conditions that prevail in early 2011. A key to understanding the results of this fourth scenario is that in the absence of tax credits and duties, the mandate drives biofuel use. Therefore, when the tax credits and duties are reintroduced, the impacts are relatively small. In general, the results show that the entire international commodity market system is remarkably robust with respect to policy changes in one country or in one sector. The policy implication is that domestic policy changes implemented by a large agricultural producer like the United States can have fairly significant impacts on the aggregate world commodity markets. A second point that emerges from the results is that the law of unintended consequences is at work in world agriculture. For example, a U.S. nitrogen tax that might presumably be motivated for environmental benefit results in an increase in world greenhouse gas emissions. A similar situation occurs in the afforestation scenario in which crop production shifts from high-yielding land in the United States to low-yielding land and probably native vegetation in the rest of the world, resulting in an unintended increase in global greenhouse gas emissions.
Resumo:
[cat] En els últims temps es parla molt del nou paper dels hidrocarburs d'Àfrica, fins i tot s'al·ludeix a un oil rush o a un african oil scramble , que inevitablement desembocarà en una confrontació bipolar entre la Xina i els Estats Units, pel control de les reserves de petroli del subsòl del continent africà. Així, el propòsit d'aquest text és, en primer lloc, realitzar una anàlisi descriptiva que ajudi a valorar la hipòtesi d'aquest african oil scramble. A continuación, amb les dades obtingudes, es discutirà sobre la possibilitat de que aquest fenomen desemboqui en un escenari de confrontació xinoamericana. Aquesta especulació ens durà a concloure que hi ha suficients indicis per a argumentar que el joc petrolífer africà podria desenvolupar-se en un escenari marcat per la multilateralitat.
Resumo:
p-toluensulfonate doped polypyrrole (PPy), undergoes an electric-field induced reversible transition from an insulating state to a highly conductive one. The spatially average field can be as small as 200 V/cm, when the temperature of the sample is below 20 K. The applied electric field leads to a sharp jump in the value of the current to a value which is nearly five orders of magnitude higher than before. When the applied electric field is reduced to below a critical value, the system switches back to a low conductive state. The effect is reversible, symmetric in voltage, and reproducible for different samples. The switching is, we believe, an electronic glass melting transition and it is due to the disordered, highly charged granular nature of PPy.
Resumo:
Genetically constructed microbial biosensors for measuring organic pollutants are mostly applied in aqueous samples. Unfortunately, the detection limit of most biosensors is insufficient to detect pollutants at low but environmentally relevant concentrations. However, organic pollutants with low levels of water solubility often have significant gas-water partitioning coefficients, which in principle makes it possible to measure such compounds in the gas rather than the aqueous phase. Here we describe the first use of a microbial biosensor for measuring organic pollutants directly in the gas phase. For this purpose, we reconstructed a bioluminescent Pseudomonas putida naphthalene biosensor strain to carry the NAH7 plasmid and a chromosomally inserted gene fusion between the sal promoter and the luxAB genes. Specific calibration studies were performed with suspended and filter-immobilized biosensor cells, in aqueous solution and in the gas phase. Gas phase measurements with filter-immobilized biosensor cells in closed flasks, with a naphthalene-contaminated aqueous phase, showed that the biosensor cells can measure naphthalene effectively. The biosensor cells on the filter responded with increasing light output proportional to the naphthalene concentration added to the water phase, even though only a small proportion of the naphthalene was present in the gas phase. In fact, the biosensor cells could concentrate a larger proportion of naphthalene through the gas phase than in the aqueous suspension, probably due to faster transport of naphthalene to the cells in the gas phase. This led to a 10-fold lower detectable aqueous naphthalene concentration (50 nM instead of 0.5 micro M). Thus, the use of bacterial biosensors for measuring organic pollutants in the gas phase is a valid method for increasing the sensitivity of these valuable biological devices.
Resumo:
Six gases (N((CH3)3), NH2OH, CF3COOH, HCl, NO2, O3) were selected to probe the surface of seven combustion aerosol (amorphous carbon, flame soot) and three types of TiO2 nanoparticles using heterogeneous, that is gas-surface reactions. The gas uptake to saturation of the probes was measured under molecular flow conditions in a Knudsen flow reactor and expressed as a density of surface functional groups on a particular aerosol, namely acidic (carboxylic) and basic (conjugated oxides such as pyrones, N-heterocycles) sites, carbonyl (R1-C(O)-R2) and oxidizable (olefinic, -OH) groups. The limit of detection was generally well below 1% of a formal monolayer of adsorbed probe gas. With few exceptions most investigated aerosol samples interacted with all probe gases which points to the coexistence of different functional groups on the same aerosol surface such as acidic and basic groups. Generally, the carbonaceous particles displayed significant differences in surface group density: Printex 60 amorphous carbon had the lowest density of surface functional groups throughout, whereas Diesel soot recovered from a Diesel particulate filter had the largest. The presence of basic oxides on carbonaceous aerosol particles was inferred from the ratio of uptakes of CF3COOH and HCl owing to the larger stability of the acetate compared to the chloride counterion in the resulting pyrylium salt. Both soots generated from a rich and a lean hexane diffusion flame had a large density of oxidizable groups similar to amorphous carbon FS 101. TiO2 15 had the lowest density of functional groups among the three studied TiO2 nanoparticles for all probe gases despite the smallest size of its primary particles. The used technique enabled the measurement of the uptake probability of the probe gases on the various supported aerosol samples. The initial uptake probability, g0, of the probe gas onto the supported nanoparticles differed significantly among the various investigated aerosol samples but was roughly correlated with the density of surface groups, as expected. [Authors]
Resumo:
La conexión entre energía e industrialización es un hecho universal y bien documentado desde hace más de dos siglos, cuando la máquina de vapor que permitió convertir la energía calorífica del carbón en energía mecánica supuso un gran avance histórico. En este sentido, el rasgo dominante de todo el siglo xx ha sido un intenso crecimiento de la demanda de energía, especialmente acusado en las décadas posteriores a la segunda guerra mundial, asociado al proceso de intenso crecimiento económico.
Resumo:
Este artigo trata de uma pesquisa aplicada de jornalismo científico on-line que fundamenta a questão energética contemplada no contexto do desenvolvimento sustentável. A pesquisa, desenvolvida em nível de mestrado, originou uma mídia digital on-line com informações científicas e tecnológicas que permitem visualizar não somente o âmbito técnico, mas também a efetiva relação interdisciplinar do tema com outras áreas de conhecimento, o que constitui um fato de particular importância no contexto de abordagem do desenvolvimento sustentável.
Resumo:
Midazolam is a widely accepted probe for phenotyping cytochrome P4503A. A gas chromatography-mass spectrometry (GC-MS)-negative chemical ionization method is presented which allows measuring very low levels of midazolam (MID), 1-OH midazolam (1OHMID) and 4-OH midazolam (4OHMID), in plasma, after derivatization with the reagent N-tert-butyldimethylsilyl-N-methyltrifluoroacetamide. The standard curves were linear over a working range of 20 pg/ml to 5 ng/ml for the three compounds, with the mean coefficients of correlation of the calibration curves (n = 6) being 0.999 for MID and 1OHMID, and 1.0 for 4OHMID. The mean recoveries measured at 100 pg/ml, 500 pg/ml, and 2 ng/ml, ranged from 76 to 87% for MID, from 76 to 99% for 1OHMID, from 68 to 84% for 4OHMID, and from 82 to 109% for N-ethyloxazepam (internal standard). Intra- (n = 7) and inter-day (n = 8) coefficients of variation determined at three concentrations ranged from 1 to 8% for MID, from 2 to 13% for 1OHMID and from 1 to 14% for 4OHMID. The percent theoretical concentrations (accuracy) were within +/-8% for MID and 1OHMID, within +/-9% for 4OHMID at 500 pg/ml and 2 ng/ml, and within +/-28% for 4OHMID at 100 pg/ml. The limits of quantitation were found to be 10 pg/ml for the three compounds. This method can be used for phenotyping cytochrome P4503A in humans following the administration of a very low oral dose of midazolam (75 microg), without central nervous system side-effects.
Resumo:
Ipomoea asarifolia (Desr.) Roem. & Schultz (Convolvulaceae) and Stachytarpheta cayennensis (Rich) Vahl. (Verbenaceae), two weeds found in pastures and crop areas in the Brazilian Amazonia, Brazil, were grown in controlled environment cabinets under high (800-1000 µmol m-² s-¹) and low (200-350 µmol m-² s-¹) light regimes during a 40-day period. The objective was to determine the effect of shade on photosynthetic features and leaf nitrogen content of I. asarifolia and S. cayennensis. High-irradiance grown I. asarifolia leaves had significantly higher dark respiration and light saturated rates of photosynthesis than low-irradiance leaves. No significant differences for these traits, between treatments, were observed in S. cayennensis. Low-irradiance leaves of both species displayed higher CO2 assimilation rates under low irradiance. High-irradiance grown leaves of both species had less nitrogen per unit of weight. Low-irradiance S. cayennensis had more nitrogen per unit of leaf area than high-irradiance plants; however, I. asarifolia showed no consistent pattern for this variable through time. For S. cayennensis, leaf nitrogen content and CO2 assimilation were inversely correlated to the amount of biomass allocated to developing reproductive structures. These results are discussed in relation to their ecological and weed management implications.
Resumo:
The role of busulfan (Bu) metabolites in the adverse events seen during hematopoietic stem cell transplantation and in drug interactions is not explored. Lack of availability of established analytical methods limits our understanding in this area. The present work describes a novel gas chromatography-tandem mass spectrometric assay for the analysis of sulfolane (Su) in plasma of patients receiving high-dose Bu. Su and Bu were extracted from a single 100 μL plasma sample by liquid-liquid extraction. Bu was separately derivatized with 2,3,5,6-tetrafluorothiophenolfluorinated agent. Mass spectrometric detection of the analytes was performed in the selected reaction monitoring mode on a triple quadrupole instrument after electronic impact ionization. Bu and Su were analyzed with separate chromatographic programs, lasting 5 min each. The assay for Su was found to be linear in the concentration range of 20-400 ng/mL. The method has satisfactory sensitivity (lower limit of quantification, 20 ng/mL) and precision (relative standard deviation less than 15 %) for all the concentrations tested with a good trueness (100 ± 5 %). This method was applied to measure Su from pediatric patients with samples collected 4 h after dose 1 (n = 46), before dose 7 (n = 56), and after dose 9 (n = 54) infusions of Bu. Su (mean ± SD) was detectable in plasma of patients 4 h after dose 1, and higher levels were observed after dose 9 (249.9 ± 123.4 ng/mL). This method may be used in clinical studies investigating the role of Su on adverse events and drug interactions associated with Bu therapy.