988 resultados para Single-electron devices


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nanowires of SiC were synthesized by carbothermally reducing PVP/TEOS composite fibres obtained by electrospinning. High-resolution transmission electron microscopy (HRTEM) and selected-area electron diffraction (SAED) indicated that the SiC nanowires are single crystalline in nature. Both Fourier-transformed infrared spectroscopy and HRTEM indicated that a thin layer of SiO2 was formed on the outer surface of the nanowire as a result of post-heat treatment for the removal of residual carbon. Such SiO2 layer protects the inner SiC fibre from further oxidation. The formation mechanism of single-crystalline SiC nanowires was proposed based on our understanding and characterizations. The growth of the nanowire is believed to be along the ( 111) of its cubic cell.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BaF2 nanocrystals doped with 5.0 mol% Eu3+ has been successfully synthesized via a facile, quick and efficient ultrasonic solution route employing the reactions between Ba(NO3)(2), Eu(NO3)(3) and KBF4 under ambient conditions. The product was characterized via X-ray powder diffraction (XRD), scanning electron micrographs (SEM), transmission electron microscopy (TEM), high-resolution transmission electron micrographs (HRTEM), selected area electron diffraction (SAED) and photoluminescence (PL) spectra. The ultrasonic irradiation has a strong effect on the morphology of the BaF2:Eu3+ particles. The caddice-sphere-like particles with an average diameter of 250 nm could be obtained with ultrasonic irradiation, whereas only olive-like particles were produced without ultrasonic irradiation. The results of XRD indicate that the obtained BaF2:Eu3+ nanospheres crystallized well with a cubic structure. The PL spectrum shows that the BaF2:Eu3+ nanospheres has the characteristic emission of Eu3+ D-5(0)-F-7(J) (J = 1-4) transitions, with the magnetic dipole D-5(0)-F-7(1) allowed transition (590 nm) being the most prominent emission line.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A highly efficient white electroluminescent polymer with simultaneous blue, green, and red emission is reported, developed using a dopant/host strategy by covalently attaching both a green- and a red-light-emitting dopant to the side chain of a blue-light-emitting polymer host (see figure). In a single-layer device a maximum luminance efficiency of 7.3 cd A(-1) with CIE coordinates of (0.31,0.32) is achieved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

High-efficiency white electrolurninescence from a single polymer is achieved by enhancing the electroluminescence efficiency and effecting a red-shift in the emission spectrum of the blue emissive species. A single-layer device of the resultant polymer exhibits a higher luminous efficiency than the nonmodified species (12.8 cd A(-1), see figure) and an external quantum efficiency of 5.4 % with CIE coordinates of (0.31,0.36), exemplifying the success of the reported methodology.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Four single polymers with two kinds of attachment of orange chromophore to blue polymer host for white electroluminescence (EL) were designed. The effect of the side-chain attachment and main-chain attachment on the EL efficiencies of the resulting polymers was compared. The side-chain-type single polymers are found to exhibit more efficient white EL than that of the main-chain-type single polymers. Based on the side-chain-type white single polymer with 4-(4-alkyloxy-phenyl)-7-(4-diphenylamino-phenyl)-2,1,3-benzothiadiazoles as the orange-dopant unit and polyfluorene as the blue polymer host, white EL with simultaneous orange (lambda(max) = 545 nm) and blue emission (lambda(max) = 432 nm/460 nm) is realised. A single-layer device (indium tin oxide/poly(3,4-ethylenedioxythiophene)/polymer/Ca/Al) made of these polymers emits white light with the Commission Internationale de l'Eclairage coordinates of (0.30,0.40), possesses a turn-on voltage of 3.5 V, luminous efficiency of 10.66 cd A(-1), power efficiency of 6.68 lm W-1, and a maximum brightness of 21240 cd m(-2).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Polyethylene (PE) chains grafted onto the sidewalls of SWCNTs (SWCNT-g-PE) were successfully synthesized via ethylene copolymerization with functionalized single-walled carbon nanotubes (f-SWCNTs) catalyzed by rac-(en)(THInd)(2)ZrCl2/ MAO. Here f-SWCNTs, in which alpha-alkene groups were chemically linked on the sidewalls of SWCNTs, were synthesized by Prato reaction. The composition and microstructure of SWCNT-g-PE were characterized by means of H-1 NMR, Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, thermogravimetric analyses (TGA), field-emission scanning electron microscope (FESEM), and transmission electron microscope (TEM). Nanosized cable-like structure was formed in the SWCNT-g-PE, in which the PE formed a tubular shell and several SWCNTs bundles existed as core. The formation of the above morphology in the SWCNT-g-PE resulted from successfully grafting of PE chains onto the surface of SWCNTs via copolymerization. The grown PE chains grafted onto the sidewall of the f-SWCNTs promoted the exfoliation of the mass nanotubes. Comparing with pure PE, the physical mixture of PE/f-SWCNTs and in situ PE/SWCNTs mixture, thermal stability, and mechanical properties of SWCNT-g-PE were higher because of the chemical bonding between the f-SWCNTs and PE chains.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The silicon backbone conformation in poly(di-n-butylsilane) (PDBS) has been shown to be a 7/3 helix at ambient conditions, which is in marked contrast to the near-planar conformation of its homologous polymers with side chain lengths of one to three or six to eight carbon atoms. In this work, both the 7/3 helical and near-planar chain conformations are achieved by controlling the solvent evaporation rate around room temperature. The chain conformation and crystal structure obtained in this method have been correlated to the crystal morphology by wide-angle X-ray diffraction, transmission electron microscopy, electron diffraction, optical microscopy, atomic force microscopy, and UV absorption spectrum. The lath-shaped single crystals obtained at 12 degreesC correspond to an orthorhombic form with near-planar chain conformation whereas the lozenge-shaped single crystals obtained at 30 degreesC (in coexistence with the lath-shaped crystals) are orthohexagonal with a 7/3 helix.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

2-(4-Biphenylyl)-5-(4-tert-butylphenyl)-1,3,4-oxdiazole (PBD) is a good electron-transporting material and can form single crystals from solution. In this work, solution cast PBD single crystals with different crystallographic axes (b, c) perpendicular to the Au/S substrates in large area are achieved by controlling the rate of solvent evaporation in the presence and absence of external electrostatic field, respectively. The orientation of these single crystals on Au/S substrate was characterized by transmission electron microscopy (TEM) and atomic force microscopy (AFM). Conducting probe atomic force microscopy (CP-AFM) was used to measure the charge transport characteristics of PBD single crystals grown on Au/S substrates. Transport was measured perpendicular to the substrate between the CP-AFM tip and the Au/S substrate. The electron mobility of 3 x 10(-3) cm(2)/(V s) for PBD single crystal along crystallographic b-axis is determined. And the electron mobility of PBD single crystal along the c-axis is about 2 orders of magnitude higher than that along the b-axis due to the anisotropic charge transport at the low voltage region.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The effect of the concentration of 4-(dicyanomethylene)-2-t-butyl-6-(1,1,7, 7-tetramethyljulolidyl-9-enyl)-4H-pyran (DCJTB) as dopant in tris(8-quinolinolato) aluminum (Alq(3)) on the charge carrier transport in Alq(3):DCJTB was investigated by measuring the steady current-voltage characteristics and the transient electroluminescence. The dopant concentration dependence of the current-voltage relationship clearly indicates the carrier trapping by the DCJTB molecule. The DCJTB concentration significantly affects the electron mobility in Alq(3):DCJTB. The mobility has a nontrivial dependence on the doping level. For relatively low doping levels, less than 1%, the electron mobility of Alq(3):DCJTB decreases with the doping level. An increasing mobility is then observed if the dopant concentration is further increased, followed by a decrease for doping levels larger than similar to2%. The change of the electron mobility with the DCJTB concentration in Alq(3) is attributed to the additional energetic disorder due to potential fluctuations caused by the dipole-dipole interaction of random distribution dopant at the relatively low doping concentration, and to the phase separation at the high doping concentration.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We model the electrical behavior of organic light-emitting diodes whose emissive multilayer is formed by blends of an electron transporting material, tris-(8-hydroxyquinoline) aluminum (Alq(3)) and a hole transporting material, N,N-'-diphenyl-N,N-'-bis(1,1(')-biphenyl)-4,4-diamine. The multilayer is composed of layers of different concentration. The Alq(3) concentration gradually decreases from the cathode to the anode. We demonstrate that these graded devices have higher efficiency and operate at lower applied voltages than devices whose emissive layer is made of nominally homogeneous blends. Our results show an important advantage of graded devices, namely, the low values of the recombination rate distribution near the cathode and the anode, so that electrode quenching is expected to be significantly suppressed in these devices.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Single-walled carbon nanotubes (SWNTs) were modified with polyethylene (PE) prepared by in situ Ziegler-Natta polymerization. Because of the catalyst pre-treated on the surface of the SWNTs, the ethylene was expected to polymerize there. Scanning electron microscopy images and solubility measurements showed that the surface of the SWNTs was covered with a PE layer, and a crosslink may have formed between the SWNTs and PE. When the SWNTs covered with a PE layer were mixed with commercialized PE by melt blending, the resulting composite had better mechanical properties than the composite from the SWNTs without a PE layer. The yield strength, the tensile strength and modulus, the strain at break, and the fracture energy of the modified-SWNT/PE composites were improved by 25, 15.2, 25.4, 21, and 38% in comparison with those of the raw-SWNT/PE composites.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A conjugated poly(p-CN-phenylenevinylene) (PCNPV) containing both electron-donating triphenylamine units and electron-withdrawing cyano groups was prepared via Knoevenagel condensation in a good yield. Gel permeation chromatography suggested that the soluble polymer had a very high weight-average molecular weight of 309,000. A bright and saturated red emission was observed under UV excitation in solution and film. Cyclic voltammetry showed that the polymer presented quasi-reversible oxidation with a relatively low potential because of the triphenylamine unit. A single-layer indium tin oxide/PCNPV/Mg-Ag device emitted a bright red light (633 nm).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Novel PPV derivatives (PCA8-PV and PCA8-MEHPV) containing N-phenyl-carbazole units on the back-bone were successfully synthesized by the Wittig polycondensation of 3,6-bisformyl-N-(4-octyloxy-phenyl)carbazole with the corresponding tributyl phosphonium salts in good yields. The newly formed and dominant trans vinylene double bonds were confirmed by FT-IR and NMR spectroscopy. The polymers (with (M) over bar (w) of 6289 for PCA8-PV and 7387 for PCA8-MEHPV) were soluble in common organic solvents and displayed high thermal stability (T(g)s are 110.7 degreesC for PCA8-PV and 92.2 degreesC for PCA8-MEHPV, respectively) because of the incorporation of the N-phenyl-carbazole units. Cyclic voltammetry investigations (onsets: 0.8 V for PCA8-PV and 0.7 V for PCA8-MEHPV) suggested that the polymers possess enhanced hole injection/transport properties, which can be also attributed to the N-phenyl-carbazole units on the backbone. Both the single-layer and the double-layer light-emitting diodes (LEDs) that used the polymers as the active layer emitted a greenish-blue or bluish-green light (the maximum emissions located 494 nm for PCA8-PV and 507 nm for PCA8-MEHPV, respectively).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

New single-polymer electroluminescent systems containing two individual emission species - polyfluorenes as a blue host and 2,1,3-benzothiadiazole derivative units as an orange dopant on the main chain - have been designed and synthesized. The resulting single polymers are found to have highly efficient white electroluminescence with simultaneous blue(lambda(max) = 421 nm/445 nm) and orange emission (lambda(max) = 564 nm)from the corresponding emitting species. The influence of the photoluminescence (PL) efficiencies of both the blue and orange species on the electroluminescence (EL) efficiencies of white polymer light-emitting diodes (PLEDs) based on the single-polymer systems has been investigated. The introduction of the highly efficient 4,7-bis(4-(N-phenyl-N-(4-methylphenyl)amino)phenyl)-2,1,3-benzothiadiazole unit to the main chain of polyfluorene provides significant improvement in EL efficiency. For a single-layer device fabricated in air (indium tin oxide/poly(3,4-ethylenedioxythiophene): poly(styrene sulfonic acid/polymer/Ca/Al), pure-white electroluminescence with Commission Internationale de l'Eclairage (CIE) coordinates of (0.35,0.32), maximum brightness of 12 300 cd m(-2), luminance efficiency of 7.30 cd A(-1), and power efficiency of 3.34 lm W-1 can be obtained.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The authors observed a negative differential resistance (NDR) in organic devices consisting of 9,10-bis-(9,9-diphenyl-9H-fluoren-2-yl)-anthracene (DPFA) sandwiched between Ag and indium tin oxide electrodes. The large NDR shown in current-voltage characteristics is reproducible, resulting in that the organic devices can be electrically switched between a high conductance state (on state) and a low conductance state (off state). It can be found that the currents at both on to off states are space-charge limited and attributed to the electron traps at the Ag/DPFA interface. The large and reproducible NDR makes the devices of tremendous potential in low power memory and logic circuits.