971 resultados para Single photon


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Crystals of a new nonlinear optical (NLO) material, viz., L-histidinium 2-nitrobenzoate (LHNB) (1) were grown by slow evaporation of an aqueous solution containing equimolar concentrations of L-histidine and 2-nitrobenzoic acid. The structure of the title compound which crystallizes in the non-centrosymmetric monoclinic space group P2(1) was elucidated using single crystal X-ray intensity data. The UV-Vis-NIR spectrum of 1 reveals its transparent nature while the vibrational spectra confirm the presence of the functional groups in 1. The thermal stability and second harmonic generation (SHG) conversion efficiency of 1 were also investigated. (C) 2012 Elsevier GmbH. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We propose and experimentally demonstrate a three-dimensional (3D) image reconstruction methodology based on Taylor series approximation (TSA) in a Bayesian image reconstruction formulation. TSA incorporates the requirement of analyticity in the image domain, and acts as a finite impulse response filter. This technique is validated on images obtained from widefield, confocal laser scanning fluorescence microscopy and two-photon excited 4pi (2PE-4pi) fluorescence microscopy. Studies on simulated 3D objects, mitochondria-tagged yeast cells (labeled with Mitotracker Orange) and mitochondrial networks (tagged with Green fluorescent protein) show a signal-to-background improvement of 40% and resolution enhancement from 360 to 240 nm. This technique can easily be extended to other imaging modalities (single plane illumination microscopy (SPIM), individual molecule localization SPIM, stimulated emission depletion microscopy and its variants).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work, the grid mismatch problem for a single snapshot direction of arrival estimation problem is studied. We derive a Bayesian Cramer-Rao bound for the grid mismatch problem with the errors in variables model and propose a block sparse estimator for grid matching and sparse recovery.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Radical catalyzed thiol-ene reaction has become a useful alternative to the Huisgen-type azide-yne click reaction as it helps expand the variability in reaction conditions as well as the range of clickable entities. In this study, the direct generation of a hyperbranched polyether (HBPE) having decyl units at the periphery and a pendant allyl group on every repeat unit of the polymer backbone is described; the allyl groups serve as a reactive handle for postpolymerization modifications and permits the generation of a variety of internally functionalized HBPEs. In this design, the AB(2) monomer carries two decylbenzyl ether units (B-functionality), an aliphatic OH (A-functionality) and a pendant allyl group within the spacer segment; polymerization of the monomer readily occurs at 150 degrees C via melt transetherification process by continuous removal of 1-decanol under reduced pressure. The resulting HBPE has a hydrophobic periphery due to the presence of numerous decyl chains, while the allyl groups that remain unaffected during the melt polymerization provides an opportunity to install a variety of functional groups within the interior; thiol-ene click reaction with two different thiols, namely 3-mercaptopropionic acid and mercaptosuccinic acid, generated interesting amphiphilic structures. Preliminary field emission scanning electron microscope (FESEM) and Atomic Force Microscopy (AFM) imaging studies reveal the formation of fairly uniform spherical aggregates in water with sizes ranging from 200 to 400 nm; this suggests that these amphiphilic HBPs is able to reconfigure to generate jellyfish-like conformations that subsequently aggregate in an alkaline medium. The internal allyl functional groups were also used to generate intramolecularly core-crosslinked HBPEs, by the use of dithiol crosslinkers; gel permeation chromatography traces provided clear evidence for reduction in the size after crosslinking. In summary, we have developed a simple route to prepare core-clickable HBPEs and have demonstrated the quantitative reaction of the allyl groups present within the interior of the polymers; such HB polymeric systems that carry numerous functional groups within the core could have interesting applications in analyte sequestration and possibly sensing, especially from organic media. (c) 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 4125-4135

Relevância:

20.00% 20.00%

Publicador:

Resumo:

P bodies are 100-300 nm sized organelles involved in mRNA silencing and degradation. A total of 60 human proteins have been reported to localize to P bodies. Several human SNPs contribute to complex diseases by altering the structure and function of the proteins. Also, SNPs alter various transcription factors binding, splicing and miRNA regulatory sites. Owing to the essential functions of P bodies in mRNA regulation, we explored computationally the functional significance of SNPs in 7 P body components such as XRN1, DCP2, EDC3, CPEB1, GEMIN5, STAU1 and TRIM71. Computational analyses of non-synonymous SNPs of these components was initiated using well utilized publicly available software programs such as the SIFT, followed by PolyPhen, PANTHER, MutPred, I-Mutant-2.0 and PhosSNP 1.0. Functional significance of noncoding SNPs in the regulatory regions were analysed using FastSNP. Utilizing miRSNP database, we explored the role of SNPs in the context that alters the miRNA binding sites in the above mentioned genes. Our in silico studies have identified various deleterious SNPs and this cataloguing is essential and gives first hand information for further analysis by in vitro and in vivo methods for a better understanding of maintenance, assembly and functional aspects of P bodies in both health and disease. (C) 2013 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Single-stranded DNA (ssDNA) is a prerequisite for electrochemical sensor-based detection of parasite DNA and other diagnostic applications. To achieve this detection, an asymmetric polymerase chain reaction method was optimised. This method facilitates amplification of ssDNA from the human lymphatic filarial parasite Wuchereria bancrofti. This procedure produced ssDNA fragments of 188 bp in a single step when primer pairs (forward and reverse) were used at a 100:1 molar ratio in the presence of double-stranded template DNA. The ssDNA thus produced was suitable for immobilisation as probe onto the surface of an Indium tin oxide electrode and hybridisation in a system for sequence-specific electrochemical detection of W. bancrofti. The hybridisation of the ssDNA probe and target ssDNA led to considerable decreases in both the anodic and the cathodic currents of the system's redox couple compared with the unhybridised DNA and could be detected via cyclic voltammetry. This method is reproducible and avoids many of the difficulties encountered by conventional methods of filarial parasite DNA detection; thus, it has potential in xenomonitoring.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The detection efficiency of a GEM based UV sensitive gaseous photomultiplier (GPM) depends on the focusing of electrons from the drift gap to the GEM aperture. We have studied the effect of drift parameters on the efficiency of electron focusing into Thick GEM (THGEM) holes in a GPM with semitransparent UV photoconverter. This study comprises simulation of electron focusing into THGEM holes using GARFIELD for different Ar and Ne based gas mixtures and experimental investigations of the same with P10 gas mixture. (c) 2013 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The demand for energy efficient, low weight structures has boosted the use of composite structures assembled using increased quantities of structural adhesives. Bonded structures may be subjected to severe working environments such as high temperature and moisture due to which the adhesive gets degraded over a period of time. This reduces the strength of a joint and leads to premature failure. Measurement of strains in the adhesive bondline at any point of time during service may be beneficial as an assessment can be made on the integrity of a joint and necessary preventive actions may be taken before failure. This paper presents an experimental approach of measuring peel and shear strains in the adhesive bondline of composite single-lap joints using digital image correlation. Different sets of composite adhesive joints with varied bond quality were prepared and subjected to tensile load during which digital images were taken and processed using digital image correlation software. The measured peel strain at the joint edge showed a rapid increase with the initiation of a crack till failure of the joint. The measured strains were used to compute the corresponding stresses assuming a plane strain condition and the results were compared with stresses predicted using theoretical models, namely linear and nonlinear adhesive beam models. A similar trend in stress distribution was observed. Further comparison of peel and shear strains also exhibited similar trend for both healthy and degraded joints. Maximum peel stress failure criterion was used to predict the failure load of a composite adhesive joint and a comparison was made between predicted and actual failure loads. The predicted failure loads from theoretical models were found to be higher than the actual failure load for all the joints.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Single-molecule force spectroscopy has proven to be an efficient tool for the quantitative characterization of flexible foldamers on the single-molecule level in this study. The extent of folding has been estimated quantitatively for the first time to the best of our knowledge, which is crucial for a better understanding of the ``folding-process'' on single-molecule level. Therefore, this study may provide a guidance to regulate folding for realizing rational control over the functions of bulk materials.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A three-level common-mode voltage eliminated inverter with single dc supply using flying capacitor inverter and cascaded H-bridge has been proposed in this paper. The three phase space vector polygon formed by this configuration and the polygon formed by the common-mode eliminated states have been discussed. The entire system is simulated in Simulink and the results are experimentally verified. This system has an advantage that if one of devices in the H-bridge fails, the system can still be operated as a normal three-level inverter at full power. This inverter has many other advantages like use of single dc supply, making it possible for a back-to-back grid-tied converter application, improved reliability, etc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new hybrid multilevel power converter topology is presented in this paper. The proposed power converter topology uses only one DC source and floating capacitors charged to asymmetrical voltage levels, are used for generating different voltage levels. The SVPWM based control strategy used in this converter maintains the capacitor voltages at the required levels in the entire modulation range including the over-modulation region. For the voltage levels: nine and above, the number of components required in the proposed topology is significantly lower, compared to the conventional multilevel inverter topologies. The number of capacitors required in this topology reduces drastically compared to the conventional flying capacitor topology, when the number of levels in the inverter output increases. This topology has better fault tolerance, as it is capable of operating with reduced number of levels, in the entire modulation range, in the event of any failure in the H-bridges. The transient as well as the steady state performance of the nine-level version of the proposed topology is experimentally verified in the entire modulation range including the over-modulation region.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

One-pot synthesis of amorphous iron oxide nanoparticles with two different dimensions (<5 nm and 60 nm) has been achieved using the reverse micelle method, with <5 nm nanoparticles separated from the stable colloid by exploiting their magnetic behaviour. The transformation of the as-prepared amorphous powders into Fe3O4 and Fe2O3 phases (gamma and alpha) is achieved by carrying out controlled annealing at elevated temperatures under different optimized conditions. The as-prepared samples resulting from micellar synthesis and the corresponding annealed ones are thoroughly characterized by powder X-ray diffraction, transmission electron microscopy (TEM), and by Raman and X-ray photoelectron spectroscopies. Expectedly, the magnetic characteristics of Fe3O4 and Fe2O3 phase (gamma and alpha) nanoparticles are found to have strong dependence on their phase, dimension, and morphology. The coercivity of Fe3O4 and Fe2O3 (gamma and alpha) nanoparticles is reasonably high, even though high resolution TEM studies bring out that these nanoparticles are single crystalline. This is in contrast with previous reports wherein poly-crystallinity of iron oxides nanoparticles has been regarded as a prerequisite for high coercivity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We extend our analysis of transverse single spin asymmetry in electroproduction of J/ψ to include the effect of the scale evolution of the transverse momentum dependent (TMD) parton distribution functions and gluon Sivers function. We estimate single spin asymmetry for JLab, HERMES, COMPASS, and eRHIC energies using the color evaporation model of charmonium production, using an analytically obtained approximate solution of TMD evolution equations discussed in the literature. We find that there is a reduction in the asymmetry compared with our predictions for the earlier case considered by us, wherein the Q2 dependence came only from DGLAP evolution of the unpolarized gluon densities and a different parametrization of the TMD Sivers function was used.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work, the fracture behavior of magnesium single crystals is studied by conducting experiments with notched three point bend specimens of three crystallographic orientations. In the first and second orientations, the c-axis is along the normal to the flat surface of the notch, while in the third it is aligned with the notch front. For all the orientations, in situ electron back scattered diffraction observations made around the notch root show profuse tensile twinning of {10 (1) over bar2} type. Further, in the first two orientations basal and prismatic slip traces are identified from optical metallography. The width of the most prominent twin saturates at around 120-150 mu m, while twins continue to nucleate farther away to accommodate plastic deformation. In all the orientations, crack initiation occurs before the attainment of peak load and the crack grows stably along twin-matrix interface before deflecting at twin-twin intersections. Results show that profuse tensile twinning is an important energy dissipating mechanism that enhances the fracture toughness. (C) 2013 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report on the rectification properties from a single ZnS nanorod measured using the UHV-SPM technique. The rectification behavior is evidenced from the current-voltage characteristics measured on a single ZnS nanorod. We propose a tunneling mechanism where the direct tunneling mechanism is dominant at lower applied bias voltages followed by resonant tunneling through discrete energy levels of the nanorod. A further increase in the bias voltage changes the tunneling mechanism to the Fowler-Nordheim tunneling regime enabling rectification behavior. Realizing rectification from a single ZnS nanorod may provide a means of realizing a single nanorod based miniaturized device.