994 resultados para Simulate


Relevância:

10.00% 10.00%

Publicador:

Resumo:

生物质燃料乙醇是一种高度清洁的交通液体燃料,是减少温室气体排放,缓解大气污染的最佳技术选择。以非粮原料生产燃料乙醇可以在进行能源生产的同时保证粮食安全,有利于产业的可持续发展。在众多的非粮原料中,甘薯是我国开发潜力最大的生物质能源作物之一。我国占世界甘薯种植总面积和产量的90%。同时,甘薯的单位面积燃料乙醇产量远大于玉米和小麦。其成本是目前酒精中最低廉的,因此利用甘薯生产乙醇是发展生物质燃料乙醇的首要选择。目前采用薯类全原料主要采用分批发酵生产乙醇,其技术水平低,发酵强度低,一般在0.7-2.5g/(L•h),乙醇浓度低,甘薯发酵乙醇为6-8%(v/v),能耗高,环境负荷大,污染严重。针对上述问题,本文从菌株选育、原料预处理、中试放大、残糖成分分析等方面进行研究。 为了研究乙醇发酵生产规模扩大过程中,大型发酵罐底部高压条件下,CO2对酵母乙醇发酵的影响,我们通过CO2 加压的方法进行模拟试验,研究结果表明,发酵时间随压强的升高而逐渐延长,高压CO2 对乙醇发酵效率影响不大,在0.3 MPa 以下时,发酵效率均可达到90%以上。高压CO2 对发酵的抑制作用是高压和CO2 这两个因素联合作用的结果。高压CO2 条件下,酵母胞外酶和胞内重要酶类的酶活均表现出特征性。0.2 MPa 下,酶活性的变化趋势和0.1 MPa 条件下的较为一致。而0.3 MPa 下的酶活变化趋势与0.4 MPa 下的酶活更为接近。通过全基因表达分析发现在CO2 压力为0.3 MPa 下,乙醇发酵途径中多个基因表达量下调,同时海藻糖合成酶和热激蛋白基因表达量上调。 筛选耐高温的乙醇酵母菌株能够解决糖化温度和发酵温度不协调的矛盾,实现真正意义上的边糖化边发酵。高温发酵还能够降低发酵时的冷却成本,实现乙醇的周年生产。本研究筛选出一株高温发酵菌株Y-H1,进而我们对该菌株的胞外酶和胞内乙醇代谢重要酶类的酶活性进行了分析。结果表明Y-H1 能够在40 ℃条件下正常进行乙醇发酵,发酵33h,最终乙醇浓度达到10.7%(w/w),发酵效率达到90%以上。同时发酵液最终pH 在3.5 左右,显示菌株具有一定的耐酸性能力。同时观察到40 ℃下,菌株的胞外酶和胞内乙醇代谢重要酶类的酶活性发生了变化,乙醇发酵途径中关键酶基因表达下调,而海藻糖合成酶与热激蛋白基因表达量上调,这些结果为进一步研究酵母菌耐热调控机理提供了依据。 糖蜜是一种大规模工业生产乙醇的理想原料,本研究利用选育高浓度乙醇发酵菌株结合配套的发酵稳定剂,研究了糖蜜高浓度乙醇发酵情况。结果表明采用冷酸沉淀预处理糖蜜溶液,采用分批补料的发酵方式,乙醇浓度最高达到了10.26% (w/w),发酵时间为42 h。同时观察到在糖蜜发酵中,乙醛含量与乙醇浓度存在一定的相关性。 快速乙醇发酵对于缩短乙醇生产周期、降低乙醇生产成本、减少原料腐烂损失具有重要意义。本研究诱变和筛选得到了一株快速乙醇发酵菌株10232B。在优化后的发酵条件下,采用10L 发酵罐进行分批乙醇发酵,经过18h,乙醇的最终浓度达到88.5g/L,发酵效率93.6%,平均乙醇生产速度达到4.92 g/L/h。此菌株在保持较高乙醇生产浓度的同时,拥有快速生产乙醇的能力,适合作为快速乙醇发酵生产菌种。 由于鲜甘薯具有粘度大的特点,传统液化糖化处理很难在短时间内充分糖化原料;高粘度的醪液也难以进行管道输送,容易堵塞管路;同时,也会降低后续的乙醇发酵效率。 本文采用了快速粘度分析法对鲜甘薯糊化粘度特性进行了分析,进而对预处理条件进行了研究,在最佳预处理条件下,糖化2h 后,醪液葡萄糖值最高可达99.3,粘度4.5×104 mPa.s,而采用传统糖化工艺,醪液DE 值仅为85.8,粘度大于1.0×105 mPa.s。 此预处理方法也可用于快速糖化不加水的醪液。后续的乙醇发酵试验表明,通过此预处理方法获得的糖化醪液对乙醇发酵无负面影响。 在前期已实现了实验室水平的鲜甘薯燃料乙醇快速乙醇发酵基础上,进一步将发酵规模扩大到500L,在中试水平上对甘薯乙醇发酵进行了研究。结果表明在500L 中试规模,采用边糖化边发酵(SSF)工艺,在料液比为3∶1,发酵醪液最高粘度为6×104mPa.s 条件下,发酵37h,乙醇浓度达到了12.7%(v/v),发酵效率91%,发酵强度为2.7 g/(L•h)。与目前国内的薯类乙醇发酵生产技术水平具有明显的优越性。 为研究甘薯、木薯乙醇发酵中残糖的组成,采用了高效液相色谱—蒸发光散射检测法,对乙醇发酵残糖进行了分析。结果表明,甘薯、木薯乙醇发酵残糖均为寡聚糖,主要由葡萄糖、木糖、半乳糖、阿拉伯糖和甘露糖构成。随着发酵时间延长,寡聚糖中的葡萄糖、半乳糖、甘露糖可被缓慢的水解释放。提高糖化酶量仅在一定程度上降低残糖,过量的糖化酶反而会导致残糖增加。同时发现3, 5-二硝基水杨酸法不能准确测定甘薯、木薯乙醇发酵中的残总糖含量。进一步筛选了两株残糖降解菌株,对甘薯乙醇发酵残糖的降解利用率均达到了40%以上,而且还能显著降低发酵醪液粘度。经形态学和rRNA ITS 序列分析,确定这两株菌分别属于为木霉属和曲霉属黑曲霉组。 通过对以甘薯原料为代表的非粮原料发酵技术研究开发,以期形成乙醇转化率高,能耗低,生产效率高、季节适应性好,原料适应性广,经济性强,符合清洁生产机制的燃料乙醇高效转化技术,为具有我国特色的燃料乙醇发展模式提供技术支持。 Sweet potato is one of the major feedstock for the fuel ethanol production in China. The planting area and the yield in China take 90% of the world. Sweet potato is an efficient kind of energy crops. The energy outcome per area is higher than corn or wheat. And the manufacture cost of ethanol is the lowest, compared with corn and wheat. So sweet potato is the favorable crop for the bioethanol production in China. However, the low-level fermentation technology restricts the development of ethanol production by sweet potato, including slow ethanol production rate, low ethanol concentration and high energy cost. To solve these problems, we conducted research on the strain breeding, pretreatment, pilot fermentation test and residual saccharides analysis. To study the impact of hyperbaric condition at bottom of the large fermentor on yeast fermentation, high pressure carbon dioxide (CO2) was adopted to simulate the situation. The results showed that the fermentation was prolonged with the increasing pressure. The pressure of CO2 had little impact on the ethanol yield which could reach 90% under the pressure below 0.3 MPa. The inhibition was combined by the high pressure and CO2. Under the high CO2 pressure, the extracellular and important intracellular enzyme activities were different from those under normal state. The changes under 0.1 MPa and 0.2 MPa were similar. The changes under 0.3 MPa were closer to those under 0.4 MPa. The application of thermotolerance yeast could solve the problem of the inconsistent temperature between fermentation and saccharificaton and fulfill the real simultaneous saccharification and fermentation. And it could reduce the cooling cost. A thermotolerance strain Y-H1 was isolated in our research. It gave high ethanol concentration of 10.7%(w/w)at 40 ℃ for 33 h. The ethanol yield efficiency was over 90%. At 40 ℃, the extracellular and important intracellular enzyme activities of Y-H1 showed the difference with normal state, which may indicate its physiological changes at the high temperature. Molasses is another feedstock for industrial ethanol production. By our ethanol-tolerance strain and the regulation reagents, the fermentation with high ethanol concentration was investigated. In fed-batch mode combined with cold acid deposition, the highest ethanol concentration was 10.26% (w/w) for 42h. The aldehyde concentration in fermentation was found to be related to ethanol concentration. The development of a rapid ethanol fermentation strain of Zymomonas mobilis is essential for reducing the cost of ethanol production and for the timely utilization of fresh material that is easily decayed in the Chinese bioethanol industry. A mutant Z. mobilis strain, 10232B, was generated by UV mutagenesis. Under these optimized conditions, fermentation of the mutant Z. mobilis 10232B strain was completed in just 18 h with a high ethanol production rate, at an average of 4.92 gL-1h-1 per batch. The final maximum ethanol concentration was 88.5 gL-1, with an ethanol yield efficiency of 93.6%. This result illustrated the potential use of the mutant Z. mobilis 10232B strain in rapid ethanol fermentation in order to help reduce the cost of industrial ethanol production. As fresh sweet potato syrup shows high viscosity, it is hard to be fully converted to glucose by enzymes in the traditional saccharification process. The high-viscosity syrup is difficult to be transmitted in pipes, which may be easily blocked. Meanwhile it could also reduce the later ethanol fermentation efficiency. To solve these problems, effects of the pretreatment conditions were investigated. The highest dextrose equivalent value of 99.3 and the lowest viscosity of 4.5×104 mPa.s were obtained by the most favorable pretreatment conditions, while those of 85.8 and over 1.0×105 mPa.s was produced by traditional treatment conditions. The pretreatment could also be applied on the material syrup without adding water. The later experiments showed that the pretreated syrup had no negative effect on the ethanol fermentation and exhibited lower viscosity. The fuel ethanol rapid production from fresh sweet potato was enlarged in the 500L pilot scale after its fulfillment on the laboratory level. The optimal ratio of material to water was 3 to 1 in 500L fermentor. With low-temperature-cooking (85 ℃) using SSF, the Saccharomyces cerevisiae was able to produce ethanol 97.44 g/kg for 37h, which reached 92% of theoretical yield. The average ethanol production rate was 4.06 g/kg/h. And the maximum viscosity of syrup reached 6×104mPa.s. The results showed its superiority over current industrial ethanol fermentation. The compositions of the residual saccharides in the ethanol fermentation by sweet potato and cassava were analyzed by high performance liquid chromatography coupled with evaporative light-scattering detector. The results showed that all the residual saccharides were oligosaccharides, mainly composed of glucose, xylose, galactose, arabinose and mannose. The glucose, galactose and mannose could be slowly hydrolyzed from oligosaccharides in syrup during a long period. To increase the glucoamylase dosage could lower the residual saccharides to a certain extent. However, excess glucoamylase dosage led to more residual saccharides. And the method of 3, 5-dinitrosalicylic acid could not accurately quantify the residual total saccharides content. Two residual saccharides degrading strains were isolated, which could utilize 40% of total residual saccharide and lower the syrup viscosity. With the analysis of morphology and internal transcribed spacer sequence, they were finally identified as species of Trichoderma and Aspergillus niger.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Characteristic of uranium biosorption in water solution by Rhodotorula glutinis was investigated in the present study and the optimal pH for uranium adsorption was found to be 6-7.At the same time,maximum adsorption capacity of 149.4 mgU/(g dry cell)was identified,and Langmuir adsorption models can be used to simulate the isothermal biosorption process with high correlation coefficient of 0.99.According to Fourier transform infrared spectra,a new peak at wave number of 904 cm-1,which can be assigned to the ...中文摘要:研究了粘红酵母对水溶液中铀的吸附行为,发现其吸附铀的最佳pH值为6~7,最大吸附量为149.4mgU.g-1,其吸附等温线和Langmuir吸附等温方程符合较好,相关系数R2达到0.99;比较吸附铀前后粘红酵母的红外光谱图发现,吸附过铀的菌体的红外光谱在904cm-1处出现了一个新的峰,此峰为UO2的伸缩振动峰,说明粘红酵母确实对铀发生了吸附作用。此外,氨基或羟基的伸缩振动峰由3309移至3287cm-1,细胞壁中碳水化合物或醇中C—O键伸缩振动发生位移,由1068移至1080cm-1,说明这些基团可能参与了吸附过程;蛋白质的特征吸收峰(1653,1540,1237cm-1)在吸附前后基本无明显变化,表明粘红酵母的主要成分及结构仍保持完整。吸附后的菌体利用0.1mol.L-1的NaHCO3处理后可解吸出其中96%的铀,可见该菌在铀矿废水处理方面具有广阔的应用前景。

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Based on Monte Carlo method the microscopic gas-phase adsorption chromatographic behaviors of volatile chemical compounds were simulated,and the migration process of those compounds followed by the carrier gases along the chromatographic surface and the process of adsorption-desorption were also described.The programs have been compiled to simulate the processes of thermochromatography and isothermal chromatography with different experimental conditions and properties.The calculated results agree well with ...中文摘要:用蒙特卡罗方法模拟了易挥发化合物的气相色谱微观动力学行为,描述了化合物随气流在固体色谱柱表面的迁移以及吸附-解吸等过程。按气相色谱微观动力学模型编译的计算机程序模拟了超重元素化合物在等温色谱及热色谱的动力学过程,并根据不同实验条件进行了大量计算。计算结果与实验数据较为吻合。讨论了超重元素的半衰期、吸附态的周期、载气流量以及化合物的质量密度等对实验结果的影响及该理论模型的优点和待改进的地方。

Relevância:

10.00% 10.00%

Publicador:

Resumo:

With the construction of the neutron detection wall at the external target position on Heavy Ion Research Facility in Lanzhou-Cooling Storage Ring (HIRFL-CSR), it will be possible to detect high energy neutron. A BUU model is applied to simulate the flow in both symmetric (Ni+Ni, Pb+Pb) and asymmetric(Pb+Ni) systems. It is shown that at above several hundreds MeV/u, the flow signals are very obvious and depend clearly on the centrality of the collisions. Based on the products in the forward angle less than 20 degrees, the simulation also reveals that the determination of the reaction plane and the selection of the impact parameter, both of which are essential in the flow measurement, are well implemented. The double event and its influence on the determination of the neutron flow are also simulated.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Respiration-induced target motion is a major problem in intensity-modulated radiation therapy. Beam segments are delivered serially to form the total dose distribution. In the presence of motion, the spatial relation between dose deposition from different segments will be lost. Usually, this results in over-and underdosage. Besides such interplay effects between target motion and dynamic beam delivery as known from photon therapy, changes in internal density have an impact on delivered dose for intensity-modulated charged particle therapy. In this study, we have analysed interplay effects between raster scanned carbon ion beams and target motion. Furthermore, the potential of an online motion strategy was assessed in several simulations. An extended version of the clinical treatment planning software was used to calculate dose distributions to moving targets with and without motion compensation. For motion compensation, each individual ion pencil beam tracked the planned target position in the lateral aswell as longitudinal direction. Target translations and rotations, including changes in internal density, were simulated. Target motion simulating breathing resulted in severe degradation of delivered dose distributions. For example, for motion amplitudes of +/- 15 mm, only 47% of the target volume received 80% of the planned dose. Unpredictability of resulting dose distributions was demonstrated by varying motion parameters. On the other hand, motion compensation allowed for dose distributions for moving targets comparable to those for static targets. Even limited compensation precision (standard deviation similar to 2 mm), introduced to simulate possible limitations of real-time target tracking, resulted in less than 3% loss in dose homogeneity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A one-dimensional isothermal pseudo-homogeneous parallel flow model was developed for the methanol synthesis from CO2 in a silicone rubber/ceramic composite membrane reactor. The fourth-order Runge-Kutta method was adopted to simulate the process behaviors in the membrane reactor. How those parameters affect the reaction behaviors in the membrane reactor, such as Damkohler number Da, pressure ratio p(r), reaction temperature T, membrane separation factor alpha, membrane permeation parameter phi , as well as the non-uniform parameter of membrane permeation L-1, were discussed in detail. Parts of the theoretical results were tested and verified; the experimental results showed that the conversion of the main reaction in the membrane reactor increased by 22% against traditional fixed bed reactor, and the optimal non-uniform parameter of membrane permeation rate, L-1.opt ,does exist. (C) 2003 Elsevier B.V All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A theoretical method to calculate multidimensional Franck-Condon factors including Duschinsky effects is described and used to simulate the photoelectron spectra of HCF- and CF2- radicals. Geometry optimization and harmonic vibrational frequency calculations have been performed on the (X) over tilde (1)A' state of HCF and (X) over tilde (2)A" state of HCF-, and (X) over tilde (1)A(1) state of CF2 and (X) over tilde B-2(1) state of CF2-. Franck-Condon analyses and spectral simulation were carried out on the first photoelectron band of HCF- and CF2- respectively. The theoretical spectra obtained by employing B3LYP/6-311 + G(2d,p) values are in excellent agreement with the observed ones. In addition, the equilibrium geometry parameters, R(CF) = 0.1475 +/- 0.0005 nm, of the (X) over tilde (2)A" state of HCF-, and r(FC) = 0.1425 +/- 0.0005 nm and angle(FCF) = 100.5 +/- 0.5degrees, of the (X) over tilde B-2(i) state of CF2-, are derived by employing an iterative Franck-Condon analysis procedure in the spectral simulation. (C) 2003 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Knowledge about cumulative effects of forest management alternatives on forest landscape is required to make forest management decision. In this paper,a spatially explicit landscape model,LANDIS,was applied to simulate forest landscape changes in 200 years under four management alternatives (no cutting,clearcutting,selective cutting I and II) in Youhao Forestry Bureau located in Small Khingan Mountains. APACK was used to calculate distribution area of the representative species and species age cohort for six species. The results showed:1) timber harvest decreased area percentage of representative conifer species,Pinus koraiensis,Picea koraiensis and Picea jezoensis,Larix gmelinii to some extent compared to no cutting. The most influencing cutting mode for the area percentage of Tilia amurensis and Quercus mongolica was selective cutting II,followed by selective cutting I and clearcutting. To the contrast,the change of area percentage of Betula phatyphylla was contrary to the management alternatives; 2) As to species age cohort composition,timber harvest significantly changed age structure,that is,it decreased over-matured age cohort of representative species,and increased seedling and middle-age cohort (B. phatyphylla was not included,because its area percentage of over-mature age cohort was the highest under clearcutting than other three scenarios).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In an attempt to ascertain the rate-determining steps (RDS) of TiO2 photoelectrocatalytic (PEC) reaction, the PEC oxidation of sulfosalicylic acid (SSA) solution in a TiO2-coated electrode reactor system was monitored by applying the electrochemical impedance spectroscopy (EIS) method. In the meantime, an EIS mathematical model was first established to theoretically simulate the PEC reaction. Based on the EIS model, the theoretical simulation indicates three typical reactions in a PEC oxidation process, which include the charge-transfer-dominated reaction, both the charge-transfer- and adsorption-dominated reaction, and the adsorption-dominated reaction. The experimental results of EIS measurement showed that there was only one arc/semicircle on the EIS plane display when the external bias applied was below 200 mV (vs SCE) in the SSA PEC degradation whereas there were two arcs/semicircles when the externally applied bias exceeded 200 mV (vs SCE). The experimental results have a good agreement with the model simulation. The EIS method in this study provides an easier way to determine the RDS in a PEC oxidation process, which would be helpful to better control the reaction in practice.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The transient state (as the defined point where no enantioseparation is obtained in a dual chiral selector system) of chiral recognition of aminoglutethimide in a binary mixture of neutral cyclodextrins (CDs) was studied by capillary electrophoresis (CE). The following three dual selector systems were used: alpha-cyclodextrin (alpha-CD) and beta-cyclodextrin (beta-CD); alpha-CD and heptakis(di-O-methyl-beta-cyclodextrin) (DM-beta-CD); alpha-CD and heptakis(tri-O-methyl-beta-cyclodextrin) (TM-beta-CD). The S-(-) enantiomer of the analyte was more strongly retained in the presence of either alpha-CD or TM-beta-CD at pH 2.5, 100 mM phosphate buffer, while the R-(+) enantiomer was more strongly retained in the presence of either P-CD or DM-P-CD. In the more simple case, the elution order is invariably kept if the enantiomers have the same elution order in either one of the two hosts of the binary mixture. In contrast, the elution order may be switched by varying the concentration ratio of two hosts that produce opposite elution order for this particular analyte. In such a dual selector system, the enantioselectivity will disappear at the transient state at a certain ratio of host,:host, Moreover, the migration times of the two enantiomers with host, alone (diluted in buffer) is approximately equal to the migration times at the corresponding concentration of host, alone (diluted in buffer), where the ratio of concentrations of host,:host, is the same as in the binary mixture at the transient state. As found by nuclear magnetic resonance experiments, the analyte is forming a 1:1 complex with either one of the CDs applied. From this finding, a theoretical model based on the mobility difference of the two enantiomers was derived that was used to simulate the transient state. (C) 2000 Elsevier Science B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Geoacoustic properties of the seabed have a controlling role in the propagation and reverberation of sound in shallow-water environments. Several techniques are available to quantify the important properties but are usually unable to adequately sample the region of interest. In this paper, we explore the potential for obtaining geotechnical properties from a process-based stratigraphic model. Grain-size predictions from the stratigraphic model are combined with two acoustic models to estimate sound speed with distance across the New Jersey continental shelf and with depth below the seabed. Model predictions are compared to two independent sets of data: 1) Surficial sound speeds obtained through direct measurement using in situ compressional wave probes, and 2) sound speed as a function of depth obtained through inversion of seabed reflection measurements. In water depths less than 100 m, the model predictions produce a trend of decreasing grain-size and sound speed with increasing water depth as similarly observed in the measured surficial data. In water depths between 100 and 130 m, the model predictions exhibit an increase in sound speed that was not observed in the measured surficial data. A closer comparison indicates that the grain-sizes predicted for the surficial sediments are generally too small producing sound speeds that are too slow. The predicted sound speeds also tend to be too slow for sediments 0.5-20 m below the seabed in water depths greater than 100 m. However, in water depths less than 100 m, the sound speeds between 0.5-20-m subbottom depth are generally too fast. There are several reasons for the discrepancies including the stratigraphic model was limited to two dimensions, the model was unable to simulate biologic processes responsible for the high sound-speed shell material common in the model area, and incomplete geological records necessary to accurately predict grain-size

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We propose the exploding-reflector method to simulate a monostatic survey with a single simulation. The exploding reflector, used in seismic modeling, is adapted for ground-penetrating radar (GPR) modeling by using the analogy between acoustic and electromagnetic waves. The method can be used with ray tracing to obtain the location of the interfaces and estimate the properties of the medium on the basis of the traveltimes and reflection amplitudes. In particular, these can provide a better estimation of the conductivity and geometrical details. The modeling methodology is complemented with the use of the plane-wave method. The technique is illustrated with GPR data from an excavated tomb of the nineteenth century.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

黄土高原半干旱区土壤蒸发强烈,准确地掌握土壤水分动态对于旱地农业水分管理至关重要。应用基于物理基础的一维水热耦合SHAW(The Simultaneous Heat and Water)模型,模拟了陕西子洲岔巴沟流域1964~1967年土壤水分和土壤蒸发的动态特征,以及神木六道沟流域2006年坡地和梯田土壤水分变化。结果表明,除表层土壤水分模拟结果偏差较大,其他土层模拟值与实测值基本吻合,模拟期土壤水分模拟的相对平均绝对误差(Relatively Mean Absolutely Error,RMAE)为5.2%~11.4%。1964~1967年土壤累积蒸发量模拟值与实测值平均相对偏差为0.8%~6.1%,土壤蒸发的模拟值与实测值较为一致。因此,SHAW模型可以用于黄土高原半干旱区农田土壤水分动态规律研究。

Relevância:

10.00% 10.00%

Publicador:

Resumo:

利用SWAP(Soil-Water-Atmosphere-Plant)模型对黄土高原水蚀风蚀交错区坡地土壤-植被-大气系统中的水循环进行数值模拟。结果显示,SWAP模型很好的模拟了不同土地利用方式条件下的土壤水循环过程。根据模拟结果,水蚀风蚀交错区的丰水年份,农地和种植第一年的紫花苜蓿地季末土壤水分稍有盈余,谷子和紫花苜蓿的日蒸散量分别为1.2~2.6 mm和1.2~2.5 mm。

Relevância:

10.00% 10.00%

Publicador:

Resumo:

壤水分平衡对气候变化存在着响应,在全球变化的大背景下,研究土壤水分的可能变化是气候变化影响评估中非常重要的一项内容。目标是利用经验统计方法解集GCM网格逐月的降水和温度数据,并使用建立的气候变化情景作为WEPP的输入文件评估黄土高原王东沟流域2010~2039年土壤水分平衡(土壤水分、蒸发、渗漏和蒸腾)的可能变化。结果表明,3种情景预测2010~2039年王东沟流域年均降水可能增长1.8%~17.5%,年最高温度和最低温度分别可能增长0.5~0.9℃和2.0~2.3℃。作物蒸腾变化主要在4~6月份,土壤蒸发变化主要发生在7~9月份;作物蒸腾年均变化-5%~19%,土壤水分年均变化-4%~4%,土壤蒸发年均变化-7%~7%,均为A2a减少,B2a和GGal增大;A2a的土壤水分渗漏增长最大,GGal次之,B2a基本不变。这些结果表明气候变化及其导致的作物生长变化对土壤水分平衡存在重要的影响。