976 resultados para Simulação de processos
Resumo:
In this work we present a new clustering method that groups up points of a data set in classes. The method is based in a algorithm to link auxiliary clusters that are obtained using traditional vector quantization techniques. It is described some approaches during the development of the work that are based in measures of distances or dissimilarities (divergence) between the auxiliary clusters. This new method uses only two a priori information, the number of auxiliary clusters Na and a threshold distance dt that will be used to decide about the linkage or not of the auxiliary clusters. The number os classes could be automatically found by the method, that do it based in the chosen threshold distance dt, or it is given as additional information to help in the choice of the correct threshold. Some analysis are made and the results are compared with traditional clustering methods. In this work different dissimilarities metrics are analyzed and a new one is proposed based on the concept of negentropy. Besides grouping points of a set in classes, it is proposed a method to statistical modeling the classes aiming to obtain a expression to the probability of a point to belong to one of the classes. Experiments with several values of Na e dt are made in tests sets and the results are analyzed aiming to study the robustness of the method and to consider heuristics to the choice of the correct threshold. During this work it is explored the aspects of information theory applied to the calculation of the divergences. It will be explored specifically the different measures of information and divergence using the Rényi entropy. The results using the different metrics are compared and commented. The work also has appendix where are exposed real applications using the proposed method
Resumo:
A new method to perform TCP/IP fingerprinting is proposed. TCP/IP fingerprinting is the process of identify a remote machine through a TCP/IP based computer network. This method has many applications related to network security. Both intrusion and defence procedures may use this process to achieve their objectives. There are many known methods that perform this process in favorable conditions. However, nowadays there are many adversities that reduce the identification performance. This work aims the creation of a new OS fingerprinting tool that bypass these actual problems. The proposed method is based on the use of attractors reconstruction and neural networks to characterize and classify pseudo-random numbers generators
Resumo:
This dissertation describes the implementation of a WirelessHART networks simulation module for the Network Simulator 3, aiming for the acceptance of both on the present context of networks research and industry. For validating the module were imeplemented tests for attenuation, packet error rate, information transfer success rate and battery duration per station
Resumo:
The evolution of automation in recent years made possible the continuous monitoring of the processes of industrial plants. With this advance, the amount of information that automation systems are subjected to increased significantly. The alarms generated by the monitoring equipment are a major contributor to this increase, and the equipments are usually deployed in industrial plants without a formal methodology, which entails an increase in the number of alarms generated, thus overloading the alarm system and therefore the operators of such plants. In this context, the works of alarm management comes up with the objective of defining a formal methodology for installation of new equipment and detect problems in existing settings. This thesis aims to propose a set of metrics for the evaluation of alarm systems already deployed, so that you can identify the health of this system by analyzing the proposed indices and comparing them with parameters defined in the technical norms of alarm management. In addition, the metrics will track the work of alarm management, verifying if it is improving the quality of the alarm system. To validate the proposed metrics, data from actual process plants of the petrochemical industry were used
Resumo:
The structure of Industrial Automation bases on a hierarchical pyramid, where restricted information islands are created. Those information islands are characterized by systems where hardware and software used are proprietors. In other words, they are supplied for just a manufacturer, doing with that customer is entailed to that supplier. That solution causes great damages to companies. Once the connection and integration with other equipments, that are not of own supplier, it is very complicated. Several times it is impossible of being accomplished, because of high cost of solution or for technical incompatibility. This work consists to specify and to implement the visualization module via Web of GERINF. GERINF is a FINEP/CTPetro project that has the objective of developing a software for information management in industrial processes. GERINF is divided in three modules: visualization via Web, compress and storage and communication module. Are presented results of the utilization of a proposed system to information management of a Natural Gas collected Unit of Guamar´e on the PETROBRAS UN-RNCE.
Resumo:
The present work presents the study and implementation of an adaptive bilinear compensated generalized predictive controller. This work uses conventional techniques of predictive control and includes techniques of adaptive control for better results. In order to solve control problems frequently found in the chemical industry, bilinear models are considered to represent the dynamics of the studied systems. Bilinear models are simpler than general nonlinear model, however it can to represent the intrinsic not-linearities of industrial processes. The linearization of the model, by the approach to time step quasilinear , is used to allow the application of the equations of the generalized predictive controller (GPC). Such linearization, however, generates an error of prediction, which is minimized through a compensation term. The term in study is implemented in an adaptive form, due to the nonlinear relationship between the input signal and the prediction error.Simulation results show the efficiency of adaptive predictive bilinear controller in comparison with the conventional.
Resumo:
The using of supervision systems has become more and more essential in accessing, managing and obtaining data of industrial processes, because of constant and frequent developments in industrial automation. These supervisory systems (SCADA) have been widely used in many industrial environments to store process data and to control the processes in accordance with some adopted strategy. The SCADA s control hardware is the set of equipments that execute this work. The SCADA s supervision software accesses process data through the control hardware and shows them to the users. Currently, many industrial systems adopt supervision softwares developed by the same manufacturer of the control hardware. Usually, these softwares cannot be used with other equipments made by distinct manufacturers. This work proposes an approach for developing supervisory systems able to access process information through different control hardwares. An architecture for supervisory systems is first defined, in order to guarantee efficiency in communication and data exchange. Then, the architecture is applied in a supervisory system to monitor oil wells that use distinct control hardwares. The implementation was modeled and verified by using the formal method of the Petri networks. Finally, experimental results are presented to demonstrate the applicability of the proposed solution
Resumo:
The control, automation and optimization areas help to improve the processes used by industry. They contribute to a fast production line, improving the products quality and reducing the manufacturing costs. Didatic plants are good tools for research in these areas, providing a direct contact with some industrial equipaments. Given these capabilities, the main goal of this work is to model and control a didactic plant, which is a level and flow process control system with an industrial instrumentation. With a model it is possible to build a simulator for the plant that allows studies about its behaviour, without any of the real processes operational costs, like experiments with controllers. They can be tested several times before its application in a real process. Among the several types of controllers, it was used adaptive controllers, mainly the Direct Self-Tuning Regulators (DSTR) with Integral Action and the Gain Scheduling (GS). The DSTR was based on Pole-Placement design and use the Recursive Least Square to calculate the controller parameters. The characteristics of an adaptive system was very worth to guarantee a good performance when the controller was applied to the plant
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
Resumo:
The need to implement a software architecture that promotes the development of a SCADA supervisory system for monitoring industrial processes simulated with the flexibility of adding intelligent modules and devices such as CLP, according to the specifications of the problem, it was the motivation for this work. In the present study, we developed an intelligent supervisory system on a simulation of a distillation column modeled with Unisim. Furthermore, OLE Automation was used as communication between the supervisory and simulation software, which, with the use of the database, promoted an architecture both scalable and easy to maintain. Moreover, intelligent modules have been developed for preprocessing, data characteristics extraction, and variables inference. These modules were fundamentally based on the Encog software
Resumo:
Operating industrial processes is becoming more complex each day, and one of the factors that contribute to this growth in complexity is the integration of new technologies and smart solutions employed in the industry, such as the decision support systems. In this regard, this dissertation aims to develop a decision support system based on an computational tool called expert system. The main goal is to turn operation more reliable and secure while maximizing the amount of relevant information to each situation by using an expert system based on rules designed for a particular area of expertise. For the modeling of such rules has been proposed a high-level environment, which allows the creation and manipulation of rules in an easier way through visual programming. Despite its wide range of possible applications, this dissertation focuses only in the context of real-time filtering of alarms during the operation, properly validated in a case study based on a real scenario occurred in an industrial plant of an oil and gas refinery
Resumo:
There is a growing need to develop new tools to help end users in tasks related to the design, monitoring, maintenance and commissioning of critical infrastructures. The complexity of the industrial environment, for example, requires that these tools have flexible features in order to provide valuable data for the designers at the design phases. Furthermore, it is known that industrial processes have stringent requirements for dependability, since failures can cause economic losses, environmental damages and danger to people. The lack of tools that enable the evaluation of faults in critical infrastructures could mitigate these problems. Accordingly, the said work presents developing a framework for analyzing of dependability for critical infrastructures. The proposal allows the modeling of critical infrastructure, mapping its components to a Fault Tree. Then the mathematical model generated is used for dependability analysis of infrastructure, relying on the equipment and its interconnections failures. Finally, typical scenarios of industrial environments are used to validate the proposal
Resumo:
The processing of materials through plasma has been growing enough in the last times in several technological applications, more specifically in surfaces treatment. That growth is due, mainly, to the great applicability of plasmas as energy source, where it assumes behavior thermal, chemical and/or physical. On the other hand, the multiplicity of simultaneous physical effects (thermal, chemical and physical interactions) present in plasmas increases the complexity for understanding their interaction with solids. In that sense, as an initial step for the development of that subject, the present work treats of the computational simulation of the heating and cooling processes of steel and copper samples immersed in a plasma atmosphere, by considering two experimental geometric configurations: hollow and plane cathode. In order to reach such goal, three computational models were developed in Fortran 90 language: an one-dimensional transient model (1D, t), a two-dimensional transient model (2D, t) and a two-dimensional transient model (2D, t) which take into account the presence of a sample holder in the experimental assembly. The models were developed based on the finite volume method and, for the two-dimensional configurations, the effect of hollow cathode on the sample was considered as a lateral external heat source. The main results obtained with the three computational models, as temperature distribution and thermal gradients in the samples and in the holder, were compared with those developed by the Laboratory of Plasma, LabPlasma/UFRN, and with experiments available in the literature. The behavior showed indicates the validity of the developed codes and illustrate the need of the use of such computational tool in that process type, due to the great easiness of obtaining thermal information of interest
Resumo:
O experimento teve o objetivo de avaliar os efeitos da cobertura de palha e da simulação de chuva sobre a eficácia da mistura formulada clomazone + hexazinone no controle de plantas daninhas em área de cana-crua. Foi avaliado o controle de Brachiaria decumbens, Ipomoea grandifolia, Ipomoea hederifolia e Euphorbia heterophylla. A dose do herbicida utilizada foi de 2,2 kg ha-1 de produto comercial, correspondendo a 880 e 220 g ha-1 dos ingredientes ativos clomazone e hexazinone, respectivamente. Os tratamentos utilizados foram: T1) semeadura + palha 5 t ha-1 + aplicação + chuva de 30 mm (1DAA); T2) semeadura + chuva de 30 mm + palha 5 t ha-1 + aplicação; T3) semeadura + aplicação + palha 5 t ha-1 ; T4) semeadura + palha 5 t ha-1 + chuva de 30 mm + aplicação (12h após); T5) semeadura + palha 5 t ha-1 + aplicação + chuva de 2,5 mm (logo após); T6) semeadura + aplicação + chuva de 30 mm; T7) testemunha sem palha; e T8) testemunha com 5 t ha-1 de palha, totalizando oito tratamentos com quatro repetições, dispostos no delineamento experimental de blocos casualizados. Foram feitas avaliações visuais de controle aos 6, 13, 21, 27 e 35 dias após a aplicação (DAA). Para controle de B. decumbens, os melhores tratamentos foram aqueles nos quais o herbicida foi aplicado diretamente no solo, recebendo ou não uma camada de palha sobre o solo após a aplicação do herbicida, e quando foi aplicado sobre a camada de palha, recebendo uma chuva após a aplicação. Para a espécie E. heterophylla, os resultados foram bastante satisfatórios, proporcionando médias acima de 98% de controle, quando ocorreram precipitações posteriores à aplicação do herbicida. de modo geral, os tratamentos com a aplicação do herbicida, na ausência ou presença de palha, e posterior chuva apresentaram controle total da espécie I. hederifolia aos 35 DAA. Todos os tratamentos mostraram excelente controle para a espécie I. grandifolia.
Resumo:
The investigation of viability to use containers for Natural Gas Vehicle (NGV) storage, with different geometries of commercial standards, come from necessity to join the ambient, financial and technological benefits offered by the gas combustion, to the convenience of not modify the original proposal of the automobile. The use of these current cylindrical models for storage in the converted vehicles is justified by the excellent behavior that this geometry presents about the imposed tensions for the high pressure that the related reservoirs are submitted. However, recent research directed toward application of adsorbent materials in the natural gas reservoirs had proven a substantial redusction of pressure and, consequently, a relief of the tensions in the reservoirs. However, this study considers alternative geometries for NGV reservoirs, searching the minimization of dimensions and weight, remaining capacity to resist the tensions imposed by the new pressure situation. The proposed reservoirs parameters are calculated through a mathematical study of the internal pressure according to Brazilian standards (NBR) for pressure vessels. Finally simulations of the new geometries behavior are carried through using a commercially avaible Finite Element Method (FEM) software package ALGOR® to verify of the reservoirs efficincy under the gas pressure load