931 resultados para Signal processing Digital techniques
Resumo:
Adaptive least mean square (LMS) filters with or without training sequences, which are known as training-based and blind detectors respectively, have been formulated to counter interference in CDMA systems. The convergence characteristics of these two LMS detectors are analyzed and compared in this paper. We show that the blind detector is superior to the training-based detector with respect to convergence rate. On the other hand, the training-based detector performs better in the steady state, giving a lower excess mean-square error (MSE) for a given adaptation step size. A novel decision-directed LMS detector which achieves the low excess MSE of the training-based detector and the superior convergence performance of the blind detector is proposed.
Resumo:
In this paper, we propose a new on-line learning algorithm for the non-linear system identification: the swarm intelligence aided multi-innovation recursive least squares (SI-MRLS) algorithm. The SI-MRLS algorithm applies the particle swarm optimization (PSO) to construct a flexible radial basis function (RBF) model so that both the model structure and output weights can be adapted. By replacing an insignificant RBF node with a new one based on the increment of error variance criterion at every iteration, the model remains at a limited size. The multi-innovation RLS algorithm is used to update the RBF output weights which are known to have better accuracy than the classic RLS. The proposed method can produces a parsimonious model with good performance. Simulation result are also shown to verify the SI-MRLS algorithm.
Resumo:
A simple and effective algorithm is introduced for the system identification of Wiener system based on the observational input/output data. The B-spline neural network is used to approximate the nonlinear static function in the Wiener system. We incorporate the Gauss-Newton algorithm with De Boor algorithm (both curve and the first order derivatives) for the parameter estimation of the Wiener model, together with the use of a parameter initialization scheme. The efficacy of the proposed approach is demonstrated using an illustrative example.
Resumo:
Sirens’ used by police, fire and paramedic vehicles generate noise that propagates inside the vehicle cab that subsequently corrupts intelligibility of voice communications from the emergency vehicle to the control room. It is even common for the siren to be turned off to enable the control room to hear what is being said. Both fixed filter and adaptive filter systems have previously been developed to help cancel the transmission of the siren noise over the radio. Previous cancellation systems have only concentrated on the traditional 2-tone, wail and yelp sirens. This paper discusses an improvement to a previous adaptive filter system and presents the cancellation results to three new types of sirens; being chirp pulsar and localiser. A siren noise filter system has the capability to improve the response time for an emergency vehicle and thus help save lives. To date, this system has been tested using live recordings taken from a nonemergency situation with good results.
Resumo:
A characterization of observability for linear time-varying descriptor systemsE(t)x(t)+F(t)x(t)=B(t)u(t), y(t)=C(t)x(t) was recently developed. NeitherE norC were required to have constant rank. This paper defines a dual system, and a type of controllability so that observability of the original system is equivalent to controllability of the dual system. Criteria for observability and controllability are given in terms of arrays of derivatives of the original coefficients. In addition, the duality results of this paper lead to an improvement on a previous fundamental structure result for solvable systems of the formE(t)x(t)+F(t)x(t)=f(tt).
Resumo:
In this paper, a new model-based proportional–integral–derivative (PID) tuning and controller approach is introduced for Hammerstein systems that are identified on the basis of the observational input/output data. The nonlinear static function in the Hammerstein system is modelled using a B-spline neural network. The control signal is composed of a PID controller, together with a correction term. Both the parameters in the PID controller and the correction term are optimized on the basis of minimizing the multistep ahead prediction errors. In order to update the control signal, the multistep ahead predictions of the Hammerstein system based on B-spline neural networks and the associated Jacobian matrix are calculated using the de Boor algorithms, including both the functional and derivative recursions. Numerical examples are utilized to demonstrate the efficacy of the proposed approaches.