926 resultados para Signal Processing, EMD, Thresholding, Acceleration, Displacement, Structural Identification
Resumo:
Failures on rolling element bearings usually originate from cracks that are detectable even in their early stage of propogation by properly analyzing vibration signals measured in the proximity of the bearing. Due to micro-slipping in the roller-races contact, damage-induced vibration signals belong to the family of quasi-periodic signals with a strong second order cyclostationary component. Cyclic coherence and its integrated form are widely considered as the most suitable tools for bearing fault diagnostics and their theoretical bases have been already consolidated. This paper presents how to correctly set the parameters of the cyclostationary analysis tool to be implemented in an automatable algorithm. In the first part of the paper some general guidelines are provided for the specific application. These considerations are further verified, applying cyclostationary tools to data collected in an experimental campaign on a specific test-rig.
Resumo:
Monitoring of the integrity of rolling element bearings in the traction system of high speed trains is a fundamental operation in order to avoid catastrophic failures and to implement effective condition-based maintenance strategies. Diagnostics of rolling element bearings is usually based on vibration signal analysis by means of suitable signal processing techniques. The experimental validation of such techniques has been traditionally performed by means of laboratory tests on artificially damaged bearings, while their actual effectiveness in industrial applications, particularly in the field of rail transport, remains scarcely investigated. This paper will address the diagnostics of bearings taken from the service after a long term operation on a high speed train. These worn bearings have been installed on a test-rig, consisting of a complete full-scale traction system of a high speed train, able to reproduce the effects of wheel-track interaction and bogie-wheelset dynamics. The results of the experimental campaign show that suitable signal processing techniques are able to diagnose bearing failures even in this harsh and noisy application. Moreover, the most suitable location of the sensors on the traction system is also proposed.
Resumo:
Rolling element bearings are the most critical components in the traction system of high speed trains. Monitoring their integrity is a fundamental operation in order to avoid catastrophic failures and to implement effective condition based maintenance strategies. Generally, diagnostics of rolling element bearings is usually performed by analyzing vibration signals measured by accelerometers placed in the proximity of the bearing under investigation. Several papers have been published on this subject in the last two decades, mainly devoted to the development and assessment of signal processing techniques for diagnostics. The experimental validation of such techniques has been traditionally performed by means of laboratory tests on artificially damaged bearings, while their actual effectiveness in specific industrial applications, particularly in rail industry, remains scarcely investigated. This paper is aimed at filling this knowledge gap, by addressing the diagnostics of bearings taken from the service after a long term operation on the traction system of a high speed train. Moreover, in order to test the effectiveness of the diagnostic procedures in the environmental conditions peculiar to the rail application, a specific test-rig has been built, consisting of a complete full-scale train traction system, able to reproduce the effects of wheeltrack interaction and bogie-wheelset dynamics. The results of the experimental campaign show that suitable signal processing techniques are able to diagnose bearing failures even in this harsh and noisy application. Moreover, the most suitable location of the sensors on the traction system is proposed, in order to limit their number.
Resumo:
In this paper we demonstrate that existing cooperative spectrum sensing formulated for static primary users cannot accurately detect dynamic primary users regardless of the information fusion method. Performance error occurs as the sensing parameters calculated by the conventional detector result in sensing performance that violates the sensing requirements. Furthermore, the error is accumulated and compounded by the number of cooperating nodes. To address this limitation, we design and implement the duty cycle detection model for the context of cooperative spectrum sensing to accurately calculate the sensing parameters that satisfy the sensing requirements. We show that longer sensing duration is required to compensate for dynamic primary user traffic.
Resumo:
While formal definitions and security proofs are well established in some fields like cryptography and steganography, they are not as evident in digital watermarking research. A systematic development of watermarking schemes is desirable, but at present their development is usually informal, ad hoc, and omits the complete realization of application scenarios. This practice not only hinders the choice and use of a suitable scheme for a watermarking application, but also leads to debate about the state-of-the-art for different watermarking applications. With a view to the systematic development of watermarking schemes, we present a formal generic model for digital image watermarking. Considering possible inputs, outputs, and component functions, the initial construction of a basic watermarking model is developed further to incorporate the use of keys. On the basis of our proposed model, fundamental watermarking properties are defined and their importance exemplified for different image applications. We also define a set of possible attacks using our model showing different winning scenarios depending on the adversary capabilities. It is envisaged that with a proper consideration of watermarking properties and adversary actions in different image applications, use of the proposed model would allow a unified treatment of all practically meaningful variants of watermarking schemes.
Resumo:
This paper investigates the effect of topic dependent language models (TDLM) on phonetic spoken term detection (STD) using dynamic match lattice spotting (DMLS). Phonetic STD consists of two steps: indexing and search. The accuracy of indexing audio segments into phone sequences using phone recognition methods directly affects the accuracy of the final STD system. If the topic of a document in known, recognizing the spoken words and indexing them to an intermediate representation is an easier task and consequently, detecting a search word in it will be more accurate and robust. In this paper, we propose the use of TDLMs in the indexing stage to improve the accuracy of STD in situations where the topic of the audio document is known in advance. It is shown that using TDLMs instead of the traditional general language model (GLM) improves STD performance according to figure of merit (FOM) criteria.
Resumo:
In this paper we propose a novel scheme for carrying out speaker diarization in an iterative manner. We aim to show that the information obtained through the first pass of speaker diarization can be reused to refine and improve the original diarization results. We call this technique speaker rediarization and demonstrate the practical application of our rediarization algorithm using a large archive of two-speaker telephone conversation recordings. We use the NIST 2008 SRE summed telephone corpora for evaluating our speaker rediarization system. This corpus contains recurring speaker identities across independent recording sessions that need to be linked across the entire corpus. We show that our speaker rediarization scheme can take advantage of inter-session speaker information, linked in the initial diarization pass, to achieve a 30% relative improvement over the original diarization error rate (DER) after only two iterations of rediarization.
Resumo:
In this paper we present a novel scheme for improving speaker diarization by making use of repeating speakers across multiple recordings within a large corpus. We call this technique speaker re-diarization and demonstrate that it is possible to reuse the initial speaker-linked diarization outputs to boost diarization accuracy within individual recordings. We first propose and evaluate two novel re-diarization techniques. We demonstrate their complementary characteristics and fuse the two techniques to successfully conduct speaker re-diarization across the SAIVT-BNEWS corpus of Australian broadcast data. This corpus contains recurring speakers in various independent recordings that need to be linked across the dataset. We show that our speaker re-diarization approach can provide a relative improvement of 23% in diarization error rate (DER), over the original diarization results, as well as improve the estimated number of speakers and the cluster purity and coverage metrics.
Resumo:
We present a novel method for improving hierarchical speaker clustering in the tasks of speaker diarization and speaker linking. In hierarchical clustering, a tree can be formed that demonstrates various levels of clustering. We propose a ratio that expresses the impact of each cluster on the formation of this tree and use this to rescale cluster scores. This provides score normalisation based on the impact of each cluster. We use a state-of-the-art speaker diarization and linking system across the SAIVT-BNEWS corpus to show that our proposed impact ratio can provide a relative improvement of 16% in diarization error rate (DER).
Resumo:
A field oriented control (FOC) algorithm is simulated and implemented for use with a permanent magnet synchronous motor (PMSM). Rotor position is sensed using Hall effect switches on the stator because other hardware position sensors attached to the rotor may not be desirable or cost effective for certain applications. This places a limit on the resolution of position sensing – only a few Hall effect switches can be placed. In this simulation, three sensors are used and the position information is obtained at higher resolution by estimating it from the rotor dynamics, as shown in literature previously. This study compares the performance of the method with an incremental encoder using simulations. The FOC algorithm is implemented using Digital Motor Control (DMC) and IQ Texas Instruments libraries from a Simulink toolbox called Embedded Coder, and downloaded into a TI microcontroller (TMS320F28335) known as the Piccolo via Code Composer Studio (CCS).
Resumo:
Novel computer vision techniques have been developed to automatically detect unusual events in crowded scenes from video feeds of surveillance cameras. The research is useful in the design of the next generation intelligent video surveillance systems. Two major contributions are the construction of a novel machine learning model for multiple instance learning through compressive sensing, and the design of novel feature descriptors in the compressed video domain.
Resumo:
Due to the popularity of security cameras in public places, it is of interest to design an intelligent system that can efficiently detect events automatically. This paper proposes a novel algorithm for multi-person event detection. To ensure greater than real-time performance, features are extracted directly from compressed MPEG video. A novel histogram-based feature descriptor that captures the angles between extracted particle trajectories is proposed, which allows us to capture motion patterns of multi-person events in the video. To alleviate the need for fine-grained annotation, we propose the use of Labelled Latent Dirichlet Allocation, a “weakly supervised” method that allows the use of coarse temporal annotations which are much simpler to obtain. This novel system is able to run at approximately ten times real-time, while preserving state-of-theart detection performance for multi-person events on a 100-hour real-world surveillance dataset (TRECVid SED).
Empirical vehicle-to-vehicle pathloss modeling in highway, suburban and urban environments at 5.8GHz
Resumo:
In this paper, we present a pathloss characterization for vehicle-to-vehicle (V2V) communications based on empirical data collected from extensive measurement campaign performed under line-of-sight (LOS), non-line-of-sight (NLOS) and varying traffic densities. The experiment was conducted in three different V2V propagation environments: highway, suburban and urban at 5.8GHz. We developed pathloss models for each of the three different V2V environments considered. Based on a log-distance power law model, the values for the pathloss exponent and the standard deviation of shadowing were reported. The average pathloss exponent ranges from 1.77 for highway, 1.68 for the urban to 1.53 for the suburban environment. The reported results can contribute to vehicular network (VANET) simulators and can be used by system designers to develop, evaluate and validate new protocols and system designs under realistic propagation conditions.
Resumo:
This paper presents new schemes for recursive estimation of the state transition probabilities for hidden Markov models (HMM's) via extended least squares (ELS) and recursive state prediction error (RSPE) methods. Local convergence analysis for the proposed RSPE algorithm is shown using the ordinary differential equation (ODE) approach developed for the more familiar recursive output prediction error (RPE) methods. The presented scheme converges and is relatively well conditioned compared with the ...
Resumo:
This paper develops maximum likelihood (ML) estimation schemes for finite-state semi-Markov chains in white Gaussian noise. We assume that the semi-Markov chain is characterised by transition probabilities of known parametric from with unknown parameters. We reformulate this hidden semi-Markov model (HSM) problem in the scalar case as a two-vector homogeneous hidden Markov model (HMM) problem in which the state consist of the signal augmented by the time to last transition. With this reformulation we apply the expectation Maximumisation (EM ) algorithm to obtain ML estimates of the transition probabilities parameters, Markov state levels and noise variance. To demonstrate our proposed schemes, motivated by neuro-biological applications, we use a damped sinusoidal parameterised function for the transition probabilities.