981 resultados para Sigma-delta modulator


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Oxygen and strontium isotopes and Rb and Ba were determined in interstitial water (IW) collected from Sites 1109, 1115, and 1118 drilled on the Woodlark Rise during Ocean Drilling Program Leg 180. The trace element and mineralogical composition of the clay fraction of sediments isolated from the squeeze cakes corresponding to IW samples from Site 1109 was also determined.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A partir de la década del 70` se marca un quiebre del modelo productivo industrial, así como de las relaciones sociales y económico organizativas producto de la misma. En este marco se produce un cambio en las estructuras productivas, relacionadas con la desarticulación del Estado benefactor, en conjunción con un imperio del mercado y la reconfiguración de los modos de vida existentes cristalizados en el espacio. En este contexto, este artículo intentará abordar un proceso socio-territorial de toma ilegal de tierras por parte de la empresa Colony Park S.A., en el delta que será el puntapié inicial para analizar procesos conflictivos respecto a sus habitantes tradicionales en torno al cambio en su modo de vida, producción y relaciones sociales al consolidarse una gentrificación (Castells, 1994) y un cambio del uso del suelo tradicional a favor de los intereses del Capital. Además, analizaremos la resistencia personificada en la conjunción de los habitantes tradicionales, los vecinos y el Estado municipal. La relevancia está en analizar nuevos conflictos socio-territoriales donde la toma de tierras es producida en torno a la utilización mercantil de las mismas, y que termina generando procesos de resistencia innovadores e impensados en la sociedad industrial

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Measurements of 87Sr/86Sr on samples of planktonic foraminifers were used to reconstruct changes in the Sr isotopic composition of seawater for the past 8 Ma. The late Neogene was marked by a general, but not regular, increase in 87S/86Sr with two breaks in slope at 5.5 and 2.5 Ma. These times mark the beginning of two periods of steep increase in 87Sr/86Sr values, relative to preceding periods characterized by essentially constant values. During the last 2.5 Ma, 87Sr/86Sr values increased at an average rate of 0.000054/Ma. This steep increase suggests that the modem ocean is not in Sr isotopic equilibrium relative to its major input fluxes. A non-equilibrium model for the modern Sr budget suggests that the residence time of Sr is ~2.5 Ma, which is significantly less than previously accepted estimates of 4-5 Ma. Modelling results suggest that the increase in 87Sr/86Sr over the past 8 Ma could have resulted from a 25% increase in the riverine flux of Sr or an increase in the average 87Sr/86Sr of this flux by 0.0006. The dominant cause of increasing 87Sr/86Sr values of seawater during the late Neogene is believed to be increased rates of uplift and chemical weathering of mountainous regions. Calculations suggest that uplift and weathering of the Himalayan-Tibetan region alone can account for the majority of the observed 87Sr/86Sr increase since the early Late Miocene. Exhumation of Precambrian shield areas by continental ice-sheets may have contributed secondarily to accelerated mechanical and chemical weathering of old crustal silicates with high 87Sr/86Sr values. In fact, the upturn in 87Sr/86Sr at 2.5 Ma coincides with increased glacial activity in the Northern Hemisphere. A variety of geochemical (87Sr/86Sr, Ge/Si, d13C, CCD, etc.) and sedimentologic data (accumulation rates) from the marine sedimentary record are compatible with a progressive increase in the chemical weathering rate of continents and dissolved riverine fluxes during the late Cenozoic. We hypothesize that chemical weathering of the continents and dissolved riverine fluxes to the oceans reached a maximum during the late Pleistocene because of repeated glaciations, increased continental exposure by lowered sea level, and increased continental relief resulting from high rates of tectonism.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Biostratigraphic, sedimentologic, and geochemical analyses of hemipelagic periplatform sediments from shallow gravity cores taken during the Ocean Drilling Program Leg 194 site survey reveal that, despite the strong currents and almost infilled intraplatform bathymetric depressions, recent sedimentation at the location of the Leg 194 drill sites recorded glacial-interglacial cycles. Sediment analyses included determination of sediment type, carbonate content, bulk stable oxygen isotope composition, and calcareous nannofossil zones. Glacial periods, identified by elevated bulk d18O, are characterized by darker sediment color, coarser grain size, and lower carbonate content, whereas interglacial periods yield lighter-colored, finer, and carbonate-rich sediments. These data from the shallowmost few meters of Marion Plateau sediments complement the subsurface information of Leg 194 holes, in which the top few meters have not been analyzed in such a high-resolution fashion. In addition, these gravity cores are more likely to have recovered the sediments closest to the sediment/water interface as compared to the hydraulic piston cores collected during Leg 194.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Deep-sea pore fluids are potential archives of ancient seawater chemistry. However, the primary signal recorded in pore fluids is often overprinted by diagenetic processes. Recent studies have suggested that depth profiles of Mg concentration in deep-sea carbonate pore fluids are best explained by a rapid rise in seawater Mg over the last 10-20 Myr. To explore this possibility we measured the Mg isotopic composition of pore fluids and carbonate sediments from Ocean Drilling Program (ODP) site 807. Whereas the concentration of Mg in the pore fluid declines with depth, the isotopic composition of Mg in the pore fluid increases from -0.78 per mil near the sediment-water interface to -0.15 per mil at 778 mbsf. The Mg isotopic composition of the sediment, with few important exceptions, does not change with depth and has an average d26Mg value of -4.72 per mil. We reproduce the observed changes in sediment and pore-fluid Mg isotope values using a numerical model that incorporates Mg, Ca and Sr cycling and satisfies existing pore-fluid Ca isotope and Sr data. Our model shows that the observed trends in magnesium concentrations and isotopes are best explained as a combination of two processes: a secular rise in the seawater Mg over the Neogene and the recrystallization of low-Mg biogenic carbonate to a higher-Mg diagenetic calcite. These results indicate that burial recrystallization will add Mg to pelagic carbonate sediments, leading to an overestimation of paleo-temperatures from measured Mg/Ca ratios. The Mg isotopic composition of foraminiferal calcite appears to be only slightly altered by recrystallization making it possible to reconstruct the Mg isotopic composition of seawater through time.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ice core records demonstrate a glacial-interglacial atmospheric CO2 increase by ~100 ppm, while 14C calibration efforts document a strong decrease in atmospheric 14C concentration during this period. A calculated transfer of ~530 Gt of 14C depleted carbon is required to produce the deglacial coeval rise of carbon in the atmosphere and terrestrial biosphere. This amount is usually ascribed to oceanic carbon release, although the actual mechanisms remained elusive, since an adequately old and carbon-enriched deep-ocean reservoir seemed unlikely. Here we present a new, though still fragmentary, ocean-wide d14C dataset showing that during the Last Glacial Maximum (LGM) and Heinrich Stadial 1 (HS-1) the maximum 14C age difference between ocean deep waters and the atmosphere exceeded the modern values by up to 1500 14C yr, in the extreme reaching 5100 14C yr. Below 2000 m depth the 14C ventilation age of modern ocean waters is directly linked to the concentration of dissolved inorganic carbon (DIC). We propose as working hypothesis that the modern regression of DIC vs d14C also applies for LGM times, which implies that a mean LGM aging by ~600 14C yr corresponded to a global rise of ~85-115 µmol DIC/kg in the deep ocean. Thus, the prolonged residence time of ocean deep waters may indeed have made it possible to absorb an additional ~730-980 Gt DIC, one third of which possibly originated from intermediate waters. We also infer that LGM deep-water O2 dropped to suboxic values of <10µmol/kg in the Atlantic sector of the Southern Ocean, possibly also in the subpolar North Pacific. The outlined deglacial transfer of the extra aged, deep-ocean carbon to the atmosphere via the dynamic ocean-atmosphere carbon exchange would be sufficient to account for two trends observed, (1) for the increase in atmospheric CO2 and (2) for the 190-permil drop in atmospheric d14C during the so-called HS-1 'Mystery Interval', when atmospheric 14C production rates were largely constant.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Benthic foraminiferal d18O and Mg/Ca of sediment cores off tropical NW Africa are used to study the properties of Atlantic central waters during the Last Glacial Maximum (LGM) and Heinrich Stadial 1 (HS1). We combined our core top data with published results to develop a new Mg/Ca-temperature calibration for Planulina ariminensis, which shows a Mg/Ca-temperature sensitivity of 0.19 mmol/mol per °C. Estimates of the LGM and HS1 thermocline temperatures are comparable to the present-day values between 200 and 400 m water depth, but were 1.2-1.5°C warmer at 550-570 m depth. The HS1 thermocline waters (200-570 m depth) did not show any warming relative to the LGM. This is in contrast to previous climate model studies, which concluded that tropical Atlantic thermocline waters warmed significantly when Atlantic meridional overturning circulation was reduced. However, our results suggest that thermocline temperatures of the northeastern tropical Atlantic show no pronounced sensitivity to changes in the thermohaline circulation during glacial periods. In contrast, we find a significant increase in thermocline-water salinity during the LGM (200-550 m depth) and HS1 (200-400 m depth) with respect to the present-day, which we relate to changes in the wind-driven circulation. We infer that the LGM thermocline (200-550 m depth) and the HS1 upper thermocline (200-400 m depth) in the northeastern tropical Atlantic was ventilated by surface waters from the North Atlantic rather than the southern-sourced waters. This suggests that the frontal zone between the modern South Atlantic and North Atlantic Central Waters was probably shifted southward during the LGM and HS1.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The glacial climate system transitioned rapidly between cold (stadial) and warm (interstadial) conditions in the Northern Hemisphere. This variability, referred to as Dansgaard-Oeschger variability, is widely believed to arise from perturbations of the Atlantic Meridional Overturning Circulation. Evidence for such changes during the longer Heinrich stadials has been identified, but direct evidence for overturning circulation changes during Dansgaard-Oeschger events has proven elusive. Here we reconstruct bottom water [CO3]2- variability from B/Ca ratios of benthic foraminifera and indicators of sedimentary dissolution, and use these reconstructions to infer the flow of northern-sourced deep water to the deep central sub-Antarctic Atlantic Ocean. We find that nearly every Dansgaard-Oeschger interstadial is accompanied by a rapid incursion of North Atlantic Deep Water into the deep South Atlantic. Based on these results and transient climate model simulations, we conclude that North Atlantic stadial-interstadial climate variability was associated with significant Atlantic overturning circulation changes that were rapidly transmitted across the Atlantic. However, by demonstrating the persistent role of Atlantic overturning circulation changes in past abrupt climate variability, our reconstructions of carbonate chemistry further indicate that the carbon cycle response to abrupt climate change was not a simple function of North Atlantic overturning.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Isotopic characterization of carbon in the dissolved inorganic carbon (DIC) pool is fundamental for a wide array of scientific studies directly related to gas hydrate research. In order to generate integrated and internally consistent data of d13C of DIC in pore waters from Hydrate Ridge, we used the modern continuous flow technology of a GasBench II automated sampler interfaced to a gas source stable isotope mass spectrometer for the rapid determination (~80 samples/day) of d13C DIC in small-volume water samples. The overall precision of this technique is conservatively estimated to be better than ±0.15 per mil (1 sigma), which is similar to the precision of methods in current use. Here we present the data generated from Ocean Drilling Program Leg 204 pore water samples.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A high-resolution sedimentary record from the subarctic Malangen fjord in northern Norway, northeastern North Atlantic has been investigated in order to reconstruct variations in influx of Atlantic Water for the last 2000 years. The fjord provides a regional oceanographic climatic signal reflecting changes in the North Atlantic heat flux at this latitude because of its deep sill and the relatively narrow adjoining continental shelf. The reconstructions are based on oxygen and carbon isotopic studies of benthic foraminifera from a high accumulation basin in the Malangen fjord, providing subdecadal time resolution. A comparison between instrumental measurements of bottom water temperatures at the core location and the reconstructed temperatures from benthic foraminiferal d18O for the same time period demonstrates that the stable isotope values reflect the bottom water temperatures very well. The reconstructed temperature record shows an overall decline in temperature of c. 1°C from c. 40 BC to ad 1350. This cooling trend is assumed to be driven by an orbital forced reduction in insolation. Superimposed on the general cooling trend are several periods of warmer or colder temperatures. The long-term fluctuations in the Malangen fjord are concurrent with fluctuations of Atlantic Water in the northern North Atlantic. Although they are not directly comparable, comparisons of atmospheric temperatures and marine records, indicate a close coupling between the climate systems. After ad l800 the record shows an unprecedented warming within the last 2000 years.