943 resultados para Short chain fatty acid


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The incidence of food allergies in western countries has increased dramatically in recent decades. Tolerance to food antigens relies on mucosal CD103(+) dendritic cells (DCs), which promote differentiation of regulatory T (Treg) cells. We show that high-fiber feeding in mice improved oral tolerance and protected from food allergy. High-fiber feeding reshaped gut microbial ecology and increased the release of short-chain fatty acids (SCFAs), particularly acetate and butyrate. High-fiber feeding enhanced oral tolerance and protected against food allergy by enhancing retinal dehydrogenase activity in CD103(+) DC. This protection depended on vitamin A in the diet. This feeding regimen also boosted IgA production and enhanced T follicular helper and mucosal germinal center responses. Mice lacking GPR43 or GPR109A, receptors for SCFAs, showed exacerbated food allergy and fewer CD103(+) DCs. Dietary elements, including fiber and vitamin A, therefore regulate numerous protective pathways in the gastrointestinal tract, necessary for immune non-responsiveness to food antigens.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dissertação de mestrado, Aquacultura e Pescas, Faculdade de Ciências e Tecnologias, Universidade do Algarve, 2015

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The influence of feeding systems on the levels of functional lipids and other fatty acid concentrations in Australian beef was examined. Rump, strip loin and blade cuts obtained from grass feeding, short-term grain feeding (80 days; STGF) and long-term grain feedlot rations (150-200 days; LTFL) were used in the present study. The typical Australian feedlot ration contains more than 50% barley and/or sorghum and balanced with whole cottonseed and protein meals were used as feed for STGF and LTFL regimens. Meat cuts from 18 cattle for each feeding regimen were trimmed of visible fat and  connective tissue and then minced (300 g lean beef); replicate samples of 7g were used for fatty acid (FA) analysis. There was a significantly higher level of total omega-3 (n-3) and long chain n-3 FA in grass-fed beef (P <0.0001) than the grain-fed groups regardless of cut types. Cuts from STGF beef had significantly reduced levels of n-3 FA and conjugated linoleic acid (CLA) and similar levels of saturated, monounsaturated and n-6 FA compared with grass feeding (P <0.001). Cuts from LTFL beef had higher levels of saturated, monounsaturated, n-6 FA and trans 18:1 than similar  cuts from the other two groups (P <0.01), indicating that increased length of grain feeding was associated with more fat deposited in the carcass. There was a step-wise increase in trans 18:1 content from grass to STGF to LTGF, suggesting grain feeding elevates trans FA in beef, probably because of increased intake of 18:2n-6. Only grass-fed beef reached the target of more than 30mg of long chain n-3 FA/100 g muscle as recommended by Food Standard Australia and New Zealand for a food to be considered a source of omega- 3 fatty acids. The proportions of trans 18:1 and n-6 FA were higher (P<0.001) for both grain-fed beef groups than grass-fed beef. Data from the present study show that grain feeding decreases functional lipid  components (long chain n-3 FA and CLA) in Australian beef regardless of meat cuts, while increasing total trans 18:1 and saturated FA levels.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Blood levels of polyunsaturated fatty acids (PUFA) are considered biomarkers of status. Alpha-linolenic acid, ALA, the plant omega-3, is the dietary precursor for the long-chain omega-3 PUFA eicosapentaenoic acid (EPA), docosapentaenoic acid (DPA), and docosahexaenoic acid (DHA). Studies in normal healthy adults consuming western diets, which are rich in linoleic acid (LA), show that supplemental ALA raises EPA and DPA status in the blood and in breast milk. However, ALA or EPA dietary supplements have little effect on blood or breast milk DHA levels, whereas consumption of preformed DHA is effective in raising blood DHA levels. Addition of ALA to the diets of formula-fed infants does raise DHA, but no level of ALA tested raises DHA to levels achievable with preformed DHA at intakes similar to typical human milk DHA supply. The DHA status of infants and adults consuming preformed DHA in their diets is, on average, greater than that of people who do not consume DHA. With no other changes in diet, improvement of blood DHA status can be achieved with dietary supplements of preformed DHA, but not with supplementation of ALA, EPA, or other precursors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The major polyunsaturated fatty acid (PUFA) in the western diet is linoleic acid (LA), which is considered to be the major source of tissue arachidonic acid (AA), the principal precursor for the vaso-active eicosanoids via the cyclooxygenase enzymatic pathway. However, dietary AA may contribute significantly to tissue levels of AA in humans, leading to an increase in the production of eicosanoids, particularly the platelet aggregating, vasoconstricting, thromboxane (TXA2), hence increasing thrombosis risk. The aims of this study were to determine the extent to which dietary AA contributed to prostacyclin (PGI2) and TXA2 production in vivo and whether dietary long chain (LC) n-3 PUFA have a modulating influence on the metabolism of AA to these vaso-active eicosanoids. A gas chromatography -mass spectrometry (GCMS) method for urinary PGI2-M determination and a tandem GCMS/MS method for urinary TXA2-M determination were perfected for use within our laboratory (with the assistance of Dr Howard Knapp, University of Iowa and Professor Reinhard Lorenz, Ludwig Maximilian's University, Munich, respectively). An initial animal study compared the in vitro production of PGI2 by aorta segments with the whole body in vivo production of PGI2 in rats fed ethyl arachidonate or the ethyl ester of eicosapentaenoic acid (EPA), at levels many times higher than encountered in human diets. During AA feeding both measures of PGI2 increased, although in vitro TXA2 production was not affected. EPA feeding lowered in vitro TXA2 and in vivo PGI2. Prior to determining the effects of AA and LC n-3 PUFA in humans, a study was carried out to determine the AA and LC n-3 PUFA content of foods and from these, an estimate of the mean daily intake of AA and other LC PUFA. Eggs, organ meats and paté were found to be the richest sources of AA. Of the meat and fish analysed, white meat was found to be relatively rich in AA but poor in LC n-3 PUFA. Lean red meat, particularly kangaroo had similar LC n-3 PUFA and AA content. Fish, although rich in AA, had extremely high levels of LC n-3 PUFA. The calculated mean daily intakes of AA in Australian adults was 130mg (males) and 96mg (females). For total LC n-3 PUFA intake, the mean daily values were 247mg (males) and 197mg (females). Two human pilot studies involving dietary intervention trials examined the effects of dietary AA and AA plus long chain n-3 PUFA on thrombosis risk, gauged by the change in the ratio of PGI2 / TXA2 as well as alterations to other recognised risk factors, such as lipoprotein lipids and platelet aggregation. The desired dietary amounts of AA and LC n-3 PUFA were achieved in the first study by combining food items with known levels of each fatty acid. In the second study, where a diet with approximately equal quantities of AA and LC n-3 PUFA was being examined, kangaroo meat was consumed, following a low-fat vegetarian diet used as a baseline. Diets rich in AA alone (~500mg/day) increased plasma phospholipid (PL) AA levels, PGIi and TXA2 production. When foods containing equal quantities of AA and EPA (∼500mg/day of each) were fed to subjects PGI2 increased, with no change in TXAs production. Low fat vegetarian diets lowered PGI2 production, the level of which was reestablished by an AA rich diet (∼300mg AA/day + ∼260mg/day LC n-3 PUFA) of kangaroo meat. However, TXA2 production was not altered. A final, larger human dietary intervention trial then examined the effects of diets relatively rich in AA alone, AA plus LC n-3 PUFA and LC n-3 PUFA, on the ratio of PGI2/TXA2- The dietary sources of these fatty acids were white meat, red meat and fish, respectively. Each contained a mean level of AA of ∼140mg/day, with varying LC n-3 PUFA levels (59, 161 and 3380mg/day, respectively). Neither meat diet altered PGI2 or TXA2 production significantly, despite increasing serum PL AA levels. The fish diet resulted in a decrease in the serum and platelet PL AA/EPA ratio and TXA2 production, thus increasing the PGI2 / TXA2 ratio. These results would indicate that stores of AA in the body are sufficiently high to have effectively saturated the cyclooxygenase pathway for production of both PGI2 and TXA2, thus making any small change in the plasma level of AA due to 'normal' dietary levels, inconsequential. However, as seen in the rat study and the two pilot studies higher dietary levels of AA can increase both PGI2 and TXA2 production. Increases in platelet levels of EPA and DHA were associated with a decrease in TXA2 production, or the maintenance of a constant TXA2 level, while AA tissue levels and PGI2 production increased. This suggests a possible inhibitory effect of LC n-3 PUFA on the metabolism of AA to TXA2, particularly in platelets. From these short term studies, conducted over 2-3 week periods, it can be concluded that diets rich in lean meats can raise plasma AA levels but do not affect TXA2 or PGI2 production, hence are not pro-thrombotic. Diets rich in long chain n-3 PUFA from fish, raise plasma EPA and DHA levels, lower TXA2 production and are anti-thrombotic. Diets which combine equal quantities of AA and LC n-3 PUFA appear to increase PGI2 production while keeping TXA2 production constant. In order for these LC PUFA to have a significant effect on eicosanoid production the dietary intake of these fatty acids through foods such as red meat or white meat would have to be higher than average current Australian consumption levels.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

During Integrated Ocean Drilling Program Expedition 302 (Arctic Coring Expedition (ACEX)) a more than 200 m thick sequence of Paleogene organic carbon (OC)-rich (black shale type) sediments was drilled. Here we present new biomarker data determined in ACEX sediment samples to decipher processes controlling OC accumulation and their paleoenvironmental significance during periods of Paleogene global warmth and proposed increased freshwater discharge in the early Cenozoic. Specific source-related biomarkers including n-alkanes, fatty acids, isoprenoids, carotenoids, hopanes/hopenes, hopanoic acids, aromatic terpenoids, and long-chain alkenones show a high variability of components, derived from marine and terrestrial origin. The distribution of hopanoic acid isomers is dominated by compounds with the biological 17beta(H), 21beta(H) configuration indicating a low level of maturity. On the basis of the biomarker data the terrestrial OC supply was significantly enriched during the late Paleocene and part of the earliest Eocene, whereas increased aquatic contributions and euxinic conditions of variable intensity were determined for the Paleocene-Eocene thermal maximum and Eocene thermal maximum 2 events as well as the middle Eocene time interval. Furthermore, samples from the middle Eocene are characterized by the occurrence of long-chain alkenones, high proportions of lycopane, and high ratios (>0.6) of (n-C35 + lycopane)/n-C31. The occurrence of C37-alkenenones, which were first determined toward the end of the Azolla freshwater event, indicates that the OC becomes more marine in origin during the middle Eocene. Preliminary UK'37- based sea surface temperature (SST) values display a longterm temperature decrease of about 15C during the time interval 49-44.5 Ma (25° to 10°C), coinciding with the global benthic d18O cooling trend after the early Eocene climatic optimum. At about 46 Ma, parallel with onset of ice-rafted debris, SST (interpreted as summer temperatures) decreased to values <15°C. For the late early Miocene a SST of 11°-15°C was determined. Most of the middle Eocene ACEX sediments are characterized by a smooth short-chain n-alkane distribution, which may point to natural oil-type hydrocarbons from leakage of petroleum reservoirs or erosion of related source rocks and redeposition.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This experimental study examines the effect on performance and emission outputs of a compression ignition engine operating on biodiesels of varying carbon chain length and the degree of unsaturation. A well-instrumented, heavy-duty, multi-cylinder, common-rail, turbo-charged diesel engine was used to ensure that the results contribute in a realistic way to the ongoing debate about the impact of biofuels. Comparative measurements are reported for engine performance as well as the emissions of NOx, particle number and size distribution, and the concentration of the reactive oxygen species (which provide a measure of the toxicity of emitted particles). It is shown that the biodiesels used in this study produce lower mean effective pressure, somewhat proportionally with their lower calorific values; however, the molecular structure has been shown to have little impact on the performance of the engine. The peak in-cylinder pressure is lower for the biodiesels that produce a smaller number of emitted particles, compared to fossil diesel, but the concentration of the reactive oxygen species is significantly higher because of oxygen in the fuels. The differences in the physicochemical properties amongst the biofuels and the fossil diesel significantly affect the engine combustion and emission characteristics. Saturated short chain length fatty acid methyl esters are found to enhance combustion efficiency, reduce NOx and particle number concentration, but results in high levels of fuel consumption.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Alterations in cognitive function are characteristic of the aging process in humans and other animals. However, the nature of these age related changes in cognition is complex and is likely to be influenced by interactions between genetic predispositions and environmental factors resulting in dynamic fluctuations within and between individuals. These inter and intra-individual fluctuations are evident in both so-called normal cognitive aging and at the onset of cognitive pathology. Mild Cognitive Impairment (MCI), thought to be a prodromal phase of dementia, represents perhaps the final opportunity to mitigate cognitive declines that may lead to terminal conditions such as dementia. The prognosis for people with MCI is mixed with the evidence suggesting that many will remain stable within 10-years of diagnosis, many will improve, and many will transition to dementia. If the characteristics of people who do not progress to dementia from MCI can be identified and replicated in others it may be possible to reduce or delay dementia onset, thus reducing a growing personal and public health burden. Furthermore, if MCI onset can be prevented or delayed, the burden of cognitive decline in aging populations worldwide may be reduced. A cognitive domain that is sensitive to the effects of advancing age, and declines in which have been shown to presage the onset of dementia in MCI patients, is executive function. Moreover, environmental factors such as diet and physical activity have been shown to affect performance on tests of executive function. For example, improvements in executive function have been demonstrated as a result of increased aerobic and anaerobic physical activity and, although the evidence is not as strong, findings from dietary interventions suggest certain nutrients may preserve or improve executive functions in old age. These encouraging findings have been demonstrated in older adults with MCI and their non-impaired peers. However, there are some gaps in the literature that need to be addressed. For example, little is known about the effect on cognition of an interaction between diet and physical activity. Both are important contributors to health and wellbeing, and a growing body of evidence attests to their importance in mental and cognitive health in aging individuals. Yet physical activity and diet are rarely considered together in the context of cognitive function. There is also little known about potential underlying biological mechanisms that might explain the physical activity/diet/cognition relationship. The first aim of this program of research was to examine the individual and interactive role of physical activity and diet, specifically long chain polyunsaturated fatty acid consumption(LCn3) as predictors of MCI status. The second aim is to examine executive function in MCI in the context of the individual and interactive effects of physical activity and LCn3.. A third aim was to explore the role of immune and endocrine system biomarkers as possible mediators in the relationship between LCn3, physical activity and cognition. Study 1a was a cross-sectional analysis of MCI status as a function of erythrocyte proportions of an interaction between physical activity and LCn3. The marine based LCn3s eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) have both received support in the literature as having cognitive benefits, although comparisons of the relative benefits of EPA or DHA, particularly in relation to the aetiology of MCI, are rare. Furthermore, a limited amount of research has examined the cognitive benefits of physical activity in terms of MCI onset. No studies have examined the potential interactive benefits of physical activity and either EPA or DHA. Eighty-four male and female adults aged 65 to 87 years, 50 with MCI and 34 without, participated in Study 1a. A logistic binary regression was conducted with MCI status as a dependent variable, and the individual and interactive relationships between physical activity and either EPA or DHA as predictors. Physical activity was measured using a questionnaire and specific physical activity categories were weighted according to the metabolic equivalents (METs) of each activity to create a physical activity intensity index (PAI). A significant relationship was identified between MCI outcome and the interaction between the PAI and EPA; participants with a higher PAI and higher erythrocyte proportions of EPA were more likely to be classified as non-MCI than their less active peers with less EPA. Study 1b was a randomised control trial using the participants from Study 1a who were identified with MCI. Given the importance of executive function as a determinant of progression to more severe forms of cognitive impairment and dementia, Study 1b aimed to examine the individual and interactive effect of physical activity and supplementation with either EPA or DHA on executive function in a sample of older adults with MCI. Fifty male and female participants were randomly allocated to supplementation groups to receive 6-months of supplementation with EPA, or DHA, or linoleic acid (LA), a long chain polyunsaturated omega-6 fatty acid not known for its cognitive enhancing properties. Physical activity was measured using the PAI from Study 1a at baseline and follow-up. Executive function was measured using five tests thought to measure different executive function domains. Erythrocyte proportions of EPA and DHA were higher at follow-up; however, PAI was not significantly different. There was also a significant improvement in three of the five executive function tests at follow-up. However, regression analyses revealed that none of the variance in executive function at follow-up was predicted by EPA, DHA, PAI, the EPA by PAI interaction, or the DHA by PAI interaction. The absence of an effect may be due to a small sample resulting in limited power to find an effect, the lack of change in physical activity over time in terms of volume and/or intensity, or a combination of both reduced power and no change in physical activity. Study 2a was a cross-sectional study using cognitively unimpaired older adults to examine the individual and interactive effects of LCn3 and PAI on executive function. Several possible explanations for the absence of an effect were identified. From this consideration of alternative explanations it was hypothesised that post-onset interventions with LCn3 either alone or in interation with self-reported physical activity may not be beneficial in MCI. Thus executive function responses to the individual and interactive effects of physical activity and LCn3 were examined in a sample of older male and female adults without cognitive impairment (n = 50). A further aim of study 2a was to operationalise executive function using principal components analysis (PCA) of several executive function tests. This approach was used firstly as a data reduction technique to overcome the task impurity problem, and secondly to examine the executive function structure of the sample for evidence of de-differentiation. Two executive function components were identified as a result of the PCA (EF 1 and EF 2). However, EPA, DHA, the PAI, or the EPA by PAI or DHA by PAI interactions did not account for any variance in the executive function components in subsequent hierarchical multiple regressions. Study 2b was an exploratory correlational study designed to explore the possibility that immune and endocrine system biomarkers may act as mediators of the relationship between LCn3, PAI, the interaction between LCn3 and PAI, and executive functions. Insulin-like growth factor-1 (IGF-1), an endocrine system growth hormone, and interleukin-6 (IL-6) an immune system cytokine involved in the acute inflammatory response, have both been shown to affect cognition including executive functions. Moreover, IGF-1 and IL-6 have been shown to be antithetical in so far as chronically increased IL-6 has been associated with reduced IGF-1 levels, a relationship that has been linked to age related morbidity. Further, physical activity and LCn3 have been shown to modulate levels of both IGF-1 and IL-6. Thus, it is possible that the cognitive enhancing effects of LCn3, physical activity or their interaction are mediated by changes in the balance between IL-6 and IGF-1. Partial and non-parametric correlations were conducted in a subsample of participants from Study 2a (n = 13) to explore these relationships. Correlations of interest did not reach significance; however, the coefficients were quite large for several relationships suggesting studies with larger samples may be warranted. In summary, the current program of research found some evidence supporting an interaction between EPA, not DHA, and higher energy expenditure via physical activity in differentiating between older adults with and without MCI. However, a RCT examining executive function in older adults with MCI found no support for increasing EPA or DHA while maintaining current levels of energy expenditure. Furthermore, a cross-sectional study examining executive function in older adults without MCI found no support for better executive function performance as a function of increased EPA or DHA consumption, greater energy expenditure via physical activity or an interaction between physical activity and either EPA or DHA. Finally, an examination of endocrine and immune system biomarkers revealed promising relationships in terms of executive function in non-MCI older adults particularly with respect to LCn3 and physical activity. Taken together, these findings demonstrate a potential benefit of increasing physical activity and LCn3 consumption, particularly EPA, in mitigating the risk of developing MCI. In contrast, no support was found for a benefit to executive function as a result of increased physical activity, LCn3 consumption or an interaction between physical activity and LCn3, in participants with and without MCI. These results are discussed with reference to previous findings in the literature including possible limitations and opportunities for future research.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A sensitive method for the determination of 30 kinds of free fatty acids (FFAs, C-1-C-30) with 1-[2-(p-toluenesulfonate)-ethyl]-2-phenylimidazole-[4,5-f] 9,10-phenan- threne (TSPP) as labeling reagent and using high performance liquid chromatography with fluorescence detection and identification by online postcolumn mass spectrometry with atmospheric pressure chemical ionization (APCI) source in positive-ion mode (HPLC/MS/APCI) has been developed. TSPP could easily and quickly label FFAs in the presence of K2CO3 catalyst at 90 degrees C for 30 min in N,N-dimethylformamide (DMF) solvent, and maximal labeling yields close to 100% were observed with a 5-fold excess of molar reagent. Derivatives were stable enough to be efficiently analyzed by high performance liquid chromatography. TSPP was introduced into fatty acid molecules and effectively augmented MS ionization of fatty acid derivatives and led to regular MS and MS/MS information. The collision induced cleavage of protonated molecular ions formed specific fragment ions at m/z [MH](+)(molecular ion), m/z [M'+CH2CH2](+)(M' was molecular mass of the corresponding FFA) and m/z 295.0 (the, mass of protonated molecular core structure of TSPP). Fatty acid derivatives were separated on a reversed-phase Eclipse XDB-C-8 column (4.6 x 150 mm, 5 mu m, Agilent) with a good baseline resolution in combination with a gradient elution. Linear ranges of 30 FFAs are 2.441 x 10(-3) to 20 mu mol/L, detection limits are 3.24 similar to 36.97 fmol (injection volume 10 mu L, at a signal-to-noise ratio of 3, S/N 3:1). The mean interday precision ranged from 93.4 to 106.2% with the largest mean coefficients of variation (R.S.D.) < 7,5%. The mean intraday precision for all standards was < 6.4% of the expected concentration. Excellent linear responses were observed with correlation coefficients of > 0.9991. Good compositional data could be obtained from the analysis of extracted fatty acids from as little as 200 mg of bryophyte plant samples.Therefore, the facile TSPP derivatization coupled with HPLC/MS/APCI analysis allowed the development of a highly sensitive method for the quantitation of trace levels of short and long chain fatty acids from biological and natural environmental samples.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A simple and sensitive high-performance liquid chromatographic (HPLC) method with fluorescence detection and mass spectrometric identification has been developed for analysis of 30 long-chain and short-chain free Fatty acids (FFAs). The fatty acids were derivatized to their esters with 1-[2-(p-toluenesulfonate)ethyl]-2-phenylimidazole-[4,5-f]-9,10-phenanthrene (TSPP) in N,N-dimethylformamide (DMF) at 90 degrees C with anhydrous K2CO3 as catalyst. A mixture Of C-1-C-30 fatty acids was completely separated within 60 min by gradient elution on a reversed-phase C-8 column. Qualitative identification of the acids was performed by atmospheric-pressure chemical ionization mass spectrometry (APCI-MS) in positive-ion mode. The fluorescence excitation and emission wavelengths were 260 and 380 nm, respectively. Quantitative determination of the 30 acids in two Tibetan medicines Gentiana straminea and G. dahurica was performed. The results indicated that the medicines contained many FFAs. Linear correlation coefficients for the FFA derivatives were > 0.9991. Relative standard deviations (RSDs, n = 6) for the fatty acid derivatives were < 3%. Detection limits (at a signal-to-noise ratio of 3:1) were 3.1-38 fmol. When the fatty acid derivatives were determined in the two real samples results were satisfactory and the sensitivity and reproducibility of the method were good.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A simple and sensitive method for the determination of short and long-chain fatty acids using high-performance liquid chromatography with fluorimetric detection has been developed. The fatty acids were derivatized to their corresponding esters with 9-(2-hydroxyethyl)-carbazole (HEC) in acetonitrile at 60 degreesC with 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride as a coupling agent in the presence of 4-dimethylaminopyridine (DMAP). A mixture of esters of C-1-C-20 fatty acids was completely separated within 38 min in conjunction with a gradient elution on a reversed-phase C-18 column. The maximum fluorescence emission for the derivatized fatty acids is at 365 nm (lambda (ex) 335 nm). Studies on derivatization conditions indicate that fatty acids react proceeded rapidly and smoothly with HEC in the presence of EDC and DMAP in acetonitrile to give the corresponding sensitively fluorescent derivatives. The application of this method to the analysis of long chain fatty acids in plasma is also investigated. The LC separation shows good selectivity and reproducibility for fatty acids derivatives. The R.S.D. (n = 6) for each fatty acid derivative are <4%. The detection limits are at 45-68 fmol levels for C-14-C-20 fatty acids and even lower levels for fatty acids. (C) 2001 Elsevier Science B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The marine diatom Phaeodactylum tricornutum can accumulate up to 30% of the omega-3 long chain polyunsaturated fatty acid (LC-PUFA) eicosapentaenoic acid (EPA) and, as such, is considered a good source for the industrial production of EPA. However, P. tricornutum does not naturally accumulate significant levels of the more valuable omega-3 LC-PUFA docosahexaenoic acid (DHA). Previously, we have engineered P. tricornutum to accumulate elevated levels of DHA and docosapentaenoic acid (DPA) by overexpressing heterologous genes encoding enzyme activities of the LC-PUFA biosynthetic pathway. Here, the transgenic strain Pt_Elo5 has been investigated for the scalable production of EPA and DHA. Studies have been performed at the laboratory scale on the cultures growing in up to 1 L flasks a 3.5 L bubble column, a 550 L closed photobioreactor and a 1250 L raceway pond with artificial illumination. Detailed studies were carried out on the effect of different media, carbon sources and illumination on omega-3 LC-PUFAs production by transgenic strain Pt_Elo5 and wild type P. tricornutum grown in 3.5 L bubble columns. The highest content of DHA (7.5% of total fatty acids, TFA) in transgenic strain was achieved in cultures grown in seawater salts, Instant Ocean (IO), supplemented with F/2 nutrients (F2N) under continuous light. After identifying the optimal conditions for omega-3 LC-PUFA accumulation in the small-scale experiments we compared EPA and DHA levels of the transgenic strain grown in a larger fence-style tubular photobioreactor and a raceway pond. We observed a significant production of DHA over EPA, generating an EPA/DPA/DHA profile of 8.7%/4.5%/12.3% of TFA in cells grown in a photobioreactor, equivalent to 6.4 μg/mg dry weight DHA in a mid-exponentially growing algal culture. Omega-3 LC-PUFAs production in a raceway pond at ambient temperature but supplemented with artificial illumination (110 μmol photons m-2s-1) on a 16:8h light:dark cycle, in natural seawater and F/2 nutrients was 24.8% EPA and 10.3% DHA. Transgenic strain grown in RP produced the highest levels of EPA (12.8%) incorporated in neutral lipids. However, the highest partitioning of DHA in neutral lipids was observed in cultures grown in PBR (7.1%). Our results clearly demonstrate the potential for the development of the transgenic Pt_Elo5 as a platform for the commercial production of EPA and DHA.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Previous research suggests that low n-3 long-chain polyunsaturated fatty acid (n-3PUFA) status is associated with higher levels of depression in clinical populations. This analysis aimed to investigate the relationship between depressed mood and n-3PUFA status in a non-clinical population. The analysis was conducted on data collected as part of a large randomized controlled trial investigating the impact of n-3PUFA supplementation on depressed mood in a community-based population. On entry into the trial, data on depressed mood were collected using the Depression, Anxiety and Stress Scales (DASS) and the Beck Depression Inventory (BDI). Plasma concentrations of various n-3PUFAs and n-6 long-chain polyunsaturated fatty acids (n-6PUFAs) were obtained from fasting venous blood samples, and various demographics were also measured. Using regression, there was no evidence of an association between either measure of depressed mood and any of the measures of n-3PUFA status or of n-6PUFA: n-3PUFA ratios. Clear associations were also not found when demographic factors were included in the analyses. These findings suggest that n-3PUFAs may not have a role in the aetiology of minor depression. This is also consistent with the results of other studies that have not demonstrated an association between depressed mood and n-3PUFA status in non-clinical populations and epidemiological studies that have not demonstrated an association between depressed mood and n-3PUFA intake in these populations. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The fatty acid composition of the cellular lipids of Rhodococcus rhodochrous NCIMB 13064 grown on various long-chain haloalkanes has been investigated and the influence of halogen substituents, carbon chain length and the position of halogen substitution in the growth substrate explored. Of the total fatty acids present in cells grown on 1-chloro-, 1-bromo- and 1-iodohexadecane, 75, 90 and 81%, respectively, were substituted in the omega-position by the corresponding halogen but only 1% of the fatty acids present after growth on 1-fluorotetradecane were fluorinated in this position. The extent of the halofatty acid incorporation with different halogen substituents in the growth substrate appears to reflect the degree to which oxygenase attack is restricted to the non-halogenated end of the haloalkane. Studies of the fatty acid composition of cells after growth on a series of 1-chloroalkanes containing an even number of carbon atoms between C-10 and C-18 indicated chlorofatty acid incorporation from C-12 to C-18 substrates at levels ranging from 21% with C-12 to 75% with C-16. The chlorofatty acids formed by initial oxidation of the chloroalkane were chain-lengthened or chain-shortened by from two to eight carbon atoms, with accompanying desaturation in some instances. Substantial quantities of a methyl-branched C-19:0 chlorofatty acid were also present with several chloroalkane substrates, When the fatty acid composition of cells after growth on 1-bromoalkanes containing an odd number of carbon atoms between C-11 and C-17 was examined, the incorporation of bromofatty acids was observed with C-13, C-15 and C-17 substrates; a maximum of 76% was recorded for the C-15 bromoalkane. As with even chain-length chloroalkanes, both chain-lengthening and -shortening occurred predominantly via two-carbon units so that most bromoacids present possessed an odd number of carbon atoms, When 1-bromododecane or 2-bromododecane were substrates, overall incorporations of bromofatty acids into the lipid fraction were very similar, demonstrating that the position of halogen substitution in the haloalkane was not critical in determining the extent of incorporation of the haloacids into cellular lipids. The results of the study indicate a mechanism by which degradation products of chlorinated paraffins could enter the biological food chain.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective - The adjusted effect of long-chain polyunsaturated fatty acid (LCPUFA) intake during pregnancy on adiposity at birth of healthy full-term appropriate-for-gestational age neonates was evaluated. Study Design - In a cross-sectional convenience sample of 100 mother and infant dyads, LCPUFA intake during pregnancy was assessed by food frequency questionnaire with nutrient intake calculated using Food Processor Plus. Linear regression models for neonatal body composition measurements, assessed by air displacement plethysmography and anthropometry, were adjusted for maternal LCPUFA intakes, energy and macronutrient intakes, prepregnancy body mass index and gestational weight gain. Result - Positive associations between maternal docosahexaenoic acid intake and ponderal index in male offspring (β=0.165; 95% confidence interval (CI): 0.031–0.299; P=0.017), and between n-6:n-3 LCPUFA ratio intake and fat mass (β=0.021; 95% CI: 0.002–0.041; P=0.034) and percentage of fat mass (β=0.636; 95% CI: 0.125–1.147; P=0.016) in female offspring were found. Conclusion - Using a reliable validated method to assess body composition, adjusted positive associations between maternal docosahexaenoic acid intake and birth size in male offspring and between n-6:n-3 LCPUFA ratio intake and adiposity in female offspring were found, suggesting that maternal LCPUFA intake strongly influences fetal body composition.