996 resultados para Series, Infinite.
Resumo:
In this paper we try to fit a threshold autoregressive (TAR) model to time series data of monthly coconut oil prices at Cochin market. The procedure proposed by Tsay [7] for fitting the TAR model is briefly presented. The fitted model is compared with a simple autoregressive (AR) model. The results are in favour of TAR process. Thus the monthly coconut oil prices exhibit a type of non-linearity which can be accounted for by a threshold model.
Resumo:
This thesis Entitled On Infinite graphs and related matrices.ln the last two decades (iraph theory has captured wide attraction as a Mathematical model for any system involving a binary relation. The theory is intimately related to many other branches of Mathematics including Matrix Theory Group theory. Probability. Topology and Combinatorics . and has applications in many other disciplines..Any sort of study on infinite graphs naturally involves an attempt to extend the well known results on the much familiar finite graphs. A graph is completely determined by either its adjacencies or its incidences. A matrix can convey this information completely. This makes a proper labelling of the vertices. edges and any other elements considered, an inevitable process. Many types of labelling of finite graphs as Cordial labelling, Egyptian labelling, Arithmetic labeling and Magical labelling are available in the literature. The number of matrices associated with a finite graph are too many For a study ofthis type to be exhaustive. A large number of theorems have been established by various authors for finite matrices. The extension of these results to infinite matrices associated with infinite graphs is neither obvious nor always possible due to convergence problems. In this thesis our attempt is to obtain theorems of a similar nature on infinite graphs and infinite matrices. We consider the three most commonly used matrices or operators, namely, the adjacency matrix
Resumo:
This study is concerned with Autoregressive Moving Average (ARMA) models of time series. ARMA models form a subclass of the class of general linear models which represents stationary time series, a phenomenon encountered most often in practice by engineers, scientists and economists. It is always desirable to employ models which use parameters parsimoniously. Parsimony will be achieved by ARMA models because it has only finite number of parameters. Even though the discussion is primarily concerned with stationary time series, later we will take up the case of homogeneous non stationary time series which can be transformed to stationary time series. Time series models, obtained with the help of the present and past data is used for forecasting future values. Physical science as well as social science take benefits of forecasting models. The role of forecasting cuts across all fields of management-—finance, marketing, production, business economics, as also in signal process, communication engineering, chemical processes, electronics etc. This high applicability of time series is the motivation to this study.
Resumo:
Magnetic interactions in ionic solids are studied using parameter-free methods designed to provide accurate energy differences associated with quantum states defining the Heisenberg constant J. For a series of ionic solids including KNiF3, K2NiF4, KCuF3, K2CuF4, and high- Tc parent compound La2CuO4, the J experimental value is quantitatively reproduced. This result has fundamental implications because J values have been calculated from a finite cluster model whereas experiments refer to infinite solids. The present study permits us to firmly establish that in these wide-gap insulators, J is determined from strongly local electronic interactions involving two magnetic centers only thus providing an ab initio support to commonly used model Hamiltonians.
Resumo:
The paper presents a compact planar Ultra Wide Band ¯lter employing folded stepped impedance resonators with series capacitors and dumb bell shaped defected ground structures. An interdigital quarter wavelength coupled line is used for achieving the band pass characteristics. The transmission zeros are produced by stepped impedance resonators. The ¯lter has steep roll o® rate and good attenuation in its lower and upper stop bands, contributed by the series capacitor and defected ground structures respectively.
Resumo:
The paper summarizes the design and implementation of a quadratic edge detection filter, based on Volterra series, for enhancing calcifications in mammograms. The proposed filter can account for much of the polynomial nonlinearities inherent in the input mammogram image and can replace the conventional edge detectors like Laplacian, gaussian etc. The filter gives rise to improved visualization and early detection of microcalcifications, which if left undetected, can lead to breast cancer. The performance of the filter is analyzed and found superior to conventional spatial edge detectors
Resumo:
This work presents Bayes invariant quadratic unbiased estimator, for short BAIQUE. Bayesian approach is used here to estimate the covariance functions of the regionalized variables which appear in the spatial covariance structure in mixed linear model. Firstly a brief review of spatial process, variance covariance components structure and Bayesian inference is given, since this project deals with these concepts. Then the linear equations model corresponding to BAIQUE in the general case is formulated. That Bayes estimator of variance components with too many unknown parameters is complicated to be solved analytically. Hence, in order to facilitate the handling with this system, BAIQUE of spatial covariance model with two parameters is considered. Bayesian estimation arises as a solution of a linear equations system which requires the linearity of the covariance functions in the parameters. Here the availability of prior information on the parameters is assumed. This information includes apriori distribution functions which enable to find the first and the second moments matrix. The Bayesian estimation suggested here depends only on the second moment of the prior distribution. The estimation appears as a quadratic form y'Ay , where y is the vector of filtered data observations. This quadratic estimator is used to estimate the linear function of unknown variance components. The matrix A of BAIQUE plays an important role. If such a symmetrical matrix exists, then Bayes risk becomes minimal and the unbiasedness conditions are fulfilled. Therefore, the symmetry of this matrix is elaborated in this work. Through dealing with the infinite series of matrices, a representation of the matrix A is obtained which shows the symmetry of A. In this context, the largest singular value of the decomposed matrix of the infinite series is considered to deal with the convergence condition and also it is connected with Gerschgorin Discs and Poincare theorem. Then the BAIQUE model for some experimental designs is computed and compared. The comparison deals with different aspects, such as the influence of the position of the design points in a fixed interval. The designs that are considered are those with their points distributed in the interval [0, 1]. These experimental structures are compared with respect to the Bayes risk and norms of the matrices corresponding to distances, covariance structures and matrices which have to satisfy the convergence condition. Also different types of the regression functions and distance measurements are handled. The influence of scaling on the design points is studied, moreover, the influence of the covariance structure on the best design is investigated and different covariance structures are considered. Finally, BAIQUE is applied for real data. The corresponding outcomes are compared with the results of other methods for the same data. Thereby, the special BAIQUE, which estimates the general variance of the data, achieves a very close result to the classical empirical variance.
Resumo:
Correlation energies for all isoelectronic sequences of 2 to 20 electrons and Z = 2 to 25 are obtained by taking differences between theoretical total energies of Dirac-Fock calculations and experimental total energies. These are pure relativistic correlation energies because relativistic and QED effects are already taken care of. The theoretical as well as the experimental values are analysed critically in order to get values as accurate as possible. The correlation energies obtained show an essentially consistent behaviour from Z = 2 to 17. For Z > 17 inconsistencies occur indicating errors in the experimental values which become very large for Z > 25.
Resumo:
KAAD (Katholischer Akademischer Ausländer-Dienst)
Resumo:
This report is intended to shed more light on the ongoing water struggle in Caimanes, a small urban area in the central northern area of Chile, neighbouring Latin America’s biggest tailings dam. Undoubtedly, the water in Caimanes is running out and the conflict between the opponents of the dam and its owner, a multinational copper enterprise, is getting more and more attention by the national and also international media. In the discussion a judgment of the Chilean Supreme Court from last October plays a central role, because it is said to have granted the people from Caimanes their right to water. After a short introduction with some details about Camaines and the tailings from the dam El Mauro, the key points of this judgment shall be outlined. The final part of the report is dedicated to various institutional problems of the Chilean resources law and policy that can become virulent for the water supply and the environmental well-being of many other urban areas in the industrialized north of Chile.
Resumo:
A key capability of data-race detectors is to determine whether one thread executes logically in parallel with another or whether the threads must operate in series. This paper provides two algorithms, one serial and one parallel, to maintain series-parallel (SP) relationships "on the fly" for fork-join multithreaded programs. The serial SP-order algorithm runs in O(1) amortized time per operation. In contrast, the previously best algorithm requires a time per operation that is proportional to Tarjan’s functional inverse of Ackermann’s function. SP-order employs an order-maintenance data structure that allows us to implement a more efficient "English-Hebrew" labeling scheme than was used in earlier race detectors, which immediately yields an improved determinacy-race detector. In particular, any fork-join program running in T₁ time on a single processor can be checked on the fly for determinacy races in O(T₁) time. Corresponding improved bounds can also be obtained for more sophisticated data-race detectors, for example, those that use locks. By combining SP-order with Feng and Leiserson’s serial SP-bags algorithm, we obtain a parallel SP-maintenance algorithm, called SP-hybrid. Suppose that a fork-join program has n threads, T₁ work, and a critical-path length of T[subscript â]. When executed on P processors, we prove that SP-hybrid runs in O((T₁/P + PT[subscript â]) lg n) expected time. To understand this bound, consider that the original program obtains linear speed-up over a 1-processor execution when P = O(T₁/T[subscript â]). In contrast, SP-hybrid obtains linear speed-up when P = O(√T₁/T[subscript â]), but the work is increased by a factor of O(lg n).
Resumo:
Time series regression models are especially suitable in epidemiology for evaluating short-term effects of time-varying exposures on health. The problem is that potential for confounding in time series regression is very high. Thus, it is important that trend and seasonality are properly accounted for. Our paper reviews the statistical models commonly used in time-series regression methods, specially allowing for serial correlation, make them potentially useful for selected epidemiological purposes. In particular, we discuss the use of time-series regression for counts using a wide range Generalised Linear Models as well as Generalised Additive Models. In addition, recently critical points in using statistical software for GAM were stressed, and reanalyses of time series data on air pollution and health were performed in order to update already published. Applications are offered through an example on the relationship between asthma emergency admissions and photochemical air pollutants