973 resultados para Sepsis neonatal
Resumo:
Septic shock is characterized by increased vascular permeability and hypotension despite increased cardiac output. Numerous vasoactive cytokines are upregulated during sepsis, including angiopoietin 2 (ANG2), which increases vascular permeability. Here we report that mice engineered to inducibly overexpress ANG2 in the endothelium developed sepsis-like hemodynamic alterations, including systemic hypotension, increased cardiac output, and dilatory cardiomyopathy. Conversely, mice with cardiomyocyte-restricted ANG2 overexpression failed to develop hemodynamic alterations. Interestingly, the hemodynamic alterations associated with endothelial-specific overexpression of ANG2 and the loss of capillary-associated pericytes were reversed by intravenous injections of adeno-associated viruses (AAVs) transducing cDNA for angiopoietin 1, a TIE2 ligand that antagonizes ANG2, or AAVs encoding PDGFB, a chemoattractant for pericytes. To confirm the role of ANG2 in sepsis, we i.p. injected LPS into C57BL/6J mice, which rapidly developed hypotension, acute pericyte loss, and increased vascular permeability. Importantly, ANG2 antibody treatment attenuated LPS-induced hemodynamic alterations and reduced the mortality rate at 36 hours from 95% to 61%. These data indicate that ANG2-mediated microvascular disintegration contributes to septic shock and that inhibition of the ANG2/TIE2 interaction during sepsis is a potential therapeutic target.
Resumo:
This study was conducted to determine the incidence and etiology of neonatal seizures, and evaluate risk factors for this condition in Harris County, Texas, between 1992 and 1994. Potential cases were ascertained from four sources: discharge diagnoses at local hospitals, birth certificates, death certificates, and a clinical study of neonatal seizures conducted concurrent with this study at a large tertiary care center in Houston, Texas. The neonatal period was defined as the first 28 days of life for term infants, and up to 44 weeks gestation for preterm infants.^ There were 207 cases of neonatal seizures ascertained among 116,048 live births, yielding and incidence of 1.8 per 1000. Half of the seizures occurred by the third day of life, 70% within the first week, and 93% within the first 28 days of life. Among 48 preterm infants with seizures 15 had their initial seizure after the 28th day of life. About 25% of all seizures occurred after discharge from the hospital of birth.^ Idiopathic seizures occurred most frequently (0.5/1000 births), followed by seizures attributed to perinatal hypoxia/ischemia (0.4/1000 births), intracranial hemorrhage (0.2/1000 births), infection of the central nervous system (0.2/1000 births), and metabolic abnormalities (0.1/1000 births).^ Risk factors were evaluated based on birth certificate information, using univariate and multivariate analysis (logistic regression). Factors considered included birth weight, gender, ethnicity, place of birth, mother's age, method of delivery, parity, multiple birth and, among term infants, small birth weight for gestational age (SGA). Among preterm infants, very low birth weight (VLBW, $<$1500 grams) was the strongest risk factor, followed by birth in private/university hospitals with a Level III nursery compared with hospitals with a Level II nursery (RR = 2.9), and male sex (RR = 1.8). The effect of very low birth weight varied according to ethnicity. Compared to preterm infants weighing 2000-2999 grams, non-white VLBW infants were 12.0 times as likely to have seizures; whereas white VLBW infants were 2.5 times as likely. Among term infants, significant risk factors included SGA (RR = 1.8), birth in Level III nursery private/university hospitals versus hospitals with Level II nursery (RR = 2.0), and birth by cesarean section (RR = 2.2). ^
Neonatal dexamethasone induces premature microvascular maturation of the alveolar capillary network.
Resumo:
Postnatal glucocorticoid treatment of preterm infants was mimicked by treating newborn rats with dexamethasone (0.1-0.01 microg/g, days 1-4). This regimen has been shown to cause delayed alveolarization. Knowing that microvascular maturation (transformation of double- to single-layered capillary networks in alveolar septa) and septal thinning prevent further alveolarization, we measured septal maturation on electron photomicrographs in treated and control animals. In treated rats and before day 10, we observed a premature nonreversing microvascular maturation and a transient septal thinning, which both appeared focally. In vascular casts of both groups, we observed contacts between the two capillary layers of immature alveolar septa, which were predictive for capillary fusions. Studying serial electron microscopic sections of human lungs, we were able to confirm the postulated fusion process for the first time. We conclude that alveolar microvascular maturation indeed occurs by capillary fusion and that the dexamethasone-induced impairment of alveolarization is associated with focal premature capillary fusion.
Resumo:
BACKGROUND We describe the setup of a neonatal quality improvement tool and list which peer-reviewed requirements it fulfils and which it does not. We report on the so-far observed effects, how the units can identify quality improvement potential, and how they can measure the effect of changes made to improve quality. METHODS Application of a prospective longitudinal national cohort data collection that uses algorithms to ensure high data quality (i.e. checks for completeness, plausibility and reliability), and to perform data imaging (Plsek's p-charts and standardized mortality or morbidity ratio SMR charts). The collected data allows monitoring a study collective of very low birth-weight infants born from 2009 to 2011 by applying a quality cycle following the steps 'guideline - perform - falsify - reform'. RESULTS 2025 VLBW live-births from 2009 to 2011 representing 96.1% of all VLBW live-births in Switzerland display a similar mortality rate but better morbidity rates when compared to other networks. Data quality in general is high but subject to improvement in some units. Seven measurements display quality improvement potential in individual units. The methods used fulfil several international recommendations. CONCLUSIONS The Quality Cycle of the Swiss Neonatal Network is a helpful instrument to monitor and gradually help improve the quality of care in a region with high quality standards and low statistical discrimination capacity.
Resumo:
Perinatal brain damage is associated not only with hypoxic-ischemic insults but also with intrauterine inflammation. A combination of antenatal inflammation and asphyxia increases the risk of cerebral palsy >70 times. The aim of the present study was to determine the effect of intracisternal (i.c.) administration of endotoxin [lipopolysaccharides (LPS)] on subsequent hypoxic-ischemic brain damage in neonatal rats. Seven-day-old Wistar rats were subjected to i.c. application of NaCl or LPS (5 microg/pup). One hour later, the left common carotid artery was exposed through a midline neck incision and ligated with 6-0 surgical silk. After another hour of recovery, the pups were subjected to a hypoxic gas mixture (8% oxygen/92% nitrogen) for 60 min. The animals were randomized to four experimental groups: 1) sham control group, left common carotid artery exposed but not ligated (n = 5); 2) LPS group, subjected to i.c. application of LPS (n = 7); 3) hypoxic-ischemic study group, i.c. injection of NaCl and exposure to hypoxia after ligation of the left carotid artery (n = 17); or 4) hypoxic-ischemic/LPS study group, i.c. injection of LPS and exposure to hypoxia after ligation of the left carotid artery (n = 19). Seven days later, neonatal brains were assessed for neuronal cell damage. In a second set of experiments, rat pups received an i.c. injection of LPS (5 microg/pup) and were evaluated for tumor necrosis factor-alpha expression by immunohistochemistry. Neuronal cell damage could not be observed in the sham control or in the LPS group. In the hypoxic-ischemic/LPS group, neuronal injury in the cerebral cortex was significantly higher than in animals that were subjected to hypoxia/ischemia after i.c. application of NaCl. Injecting LPS intracisternally caused a marked expression of tumor necrosis factor-alpha in the leptomeninges. Applying LPS intracisternally sensitizes the immature rat brain to a subsequent hypoxic-ischemic insult.
Resumo:
Serum samples from 142 calves and their dams were analyzed for gammaglobulins (gammaG, calves) and selenium concentrations (Se, calves and dams). A questionnaire provided information about birth and colostrum management. The calves and their dams were distributed into two groups according the calves' gammaG concentration (< 10 and >= 10 g/L), Se concentrations were compared between groups. The correlation between gammaG and Se concentrations in the calves and their dams was analyzed. Risk factors for failure of passive transfer and Se deficiency were assessed based on the questionnaire. The gammaG concentration of 42.9 % of the calves was < 10 g/L (median: 10.9). Calves showed significantly higher gammaG values after optimized colostrum administration than calves with suboptimal colostrum administration (p < 0.004). The median Se concentration was 26.8 and 36.5 microg/L for the calves and dams, respectively. A high correlation was observed between the Se concentration of the dam and her calf (r = 0.72, p < 0.001). The calves' Se and gammaG concentrations were not significantly correlated. These results demonstrate that further efforts toward better information of farmers regarding colostrum management and Se supply are warranted.
Resumo:
OBJECTIVE Group B streptococci (GBS) may lead to early onset neonatal sepsis with severe morbidity and mortality of newborns. Intrapartum detection of GBS is needed. The objective was to compare a PCR-based test performed in the laboratory versus labor ward. STUDY DESIGN 300 patients were included prospectively. In phase I, swabs were analyzed by selective culture and rapid PCR in the laboratory. In phase II, swabs were analyzed accordingly, but the PCR test was conducted in labor ward. Test performances were analyzed and compared. RESULTS In phase I the rapid PCR test had a sensitivity of 85.71% and a specificity of 95.9%. The GBS colonization rate was 18.67%. Overall 8.5% of the PCR results were invalid. In phase II the PCR test showed a sensitivity of 85.71% and a specificity of 95.65%. The GBS colonization rate was 23.3%. Overall 23.5% of swabs tested with PCR were invalid. Initiation of specific, short 2-hour training for operating personnel in the labor ward reduced the invalid test rate to 13.4%. CONCLUSION The rapid PCR-based test yields adequate results to identify GBS colonization when performed in labor ward. In order to reduce the number of invalid tests a short training period is needed.
Resumo:
Background The relevance of mitochondrial dysfunction as to pathogenesis of multiple organ dysfunction and failure in sepsis is controversial. This focused review evaluates the evidence for impaired mitochondrial function in sepsis. Design Review of original studies in experimental sepsis animal models and clinical studies on mitochondrial function in sepsis. In vitro studies solely on cells and tissues were excluded. PubMed was searched for articles published between 1964 and July 2012. Results Data from animal experiments (rodents and pigs) and from clinical studies of septic critically ill patients and human volunteers were included. A clear pattern of sepsis-related changes in mitochondrial function is missing in all species. The wide range of sepsis models, length of experiments, presence or absence of fluid resuscitation and methods to measure mitochondrial function may contribute to the contradictory findings. A consistent finding was the high variability of mitochondrial function also in control conditions and between organs. Conclusion Mitochondrial function in sepsis is highly variable, organ specific and changes over the course of sepsis. Patients who will die from sepsis may be more affected than survivors. Nevertheless, the current data from mostly young and otherwise healthy animals does not support the view that mitochondrial dysfunction is the general denominator for multiple organ failure in severe sepsis and septic shock. Whether this is true if underlying comorbidities are present, especially in older patients, should be addressed in further studies.
Resumo:
INTRODUCTION: The objective of this study was to evaluate the effects of two different mean arterial blood pressure (MAP) targets on needs for resuscitation, organ dysfunction, mitochondrial respiration and inflammatory response in a long-term model of fecal peritonitis. METHODS: Twenty-four anesthetized and mechanically ventilated pigs were randomly assigned (n = 8/group) to a septic control group (septic-CG) without resuscitation until death or one of two groups with resuscitation performed after 12 hours of untreated sepsis for 48 hours, targeting MAP 50-60 mmHg (low-MAP) or 75-85 mmHg (high-MAP). RESULTS: MAP at the end of resuscitation was 56 ± 13 mmHg (mean ± SD) and 76 ± 17 mmHg respectively, for low-MAP and high-MAP groups. One animal each in high- and low-MAP groups, and all animals in septic-CG died (median survival time: 21.8 hours, inter-quartile range: 16.3-27.5 hours). Norepinephrine was administered to all animals of the high-MAP group (0.38 (0.21-0.56) mcg/kg/min), and to three animals of the low-MAP group (0.00 (0.00-0.25) mcg/kg/min; P = 0.009). The high-MAP group had a more positive fluid balance (3.3 ± 1.0 mL/kg/h vs. 2.3 ± 0.7 mL/kg/h; P = 0.001). Inflammatory markers, skeletal muscle ATP content and hemodynamics other than MAP did not differ between low- and high-MAP groups. The incidence of acute kidney injury (AKI) after 12 hours of untreated sepsis was, respectively for low- and high-MAP groups, 50% (4/8) and 38% (3/8), and in the end of the study 57% (4/7) and 0% (P = 0.026). In septic-CG, maximal isolated skeletal muscle mitochondrial Complex I, State 3 respiration increased from 1357 ± 149 pmol/s/mg to 1822 ± 385 pmol/s/mg, (P = 0.020). In high- and low-MAP groups, permeabilized skeletal muscle fibers Complex IV-state 3 respiration increased during resuscitation (P = 0.003). CONCLUSIONS: The MAP targets during resuscitation did not alter the inflammatory response, nor affected skeletal muscle ATP content and mitochondrial respiration. While targeting a lower MAP was associated with increased incidence of AKI, targeting a higher MAP resulted in increased net positive fluid balance and vasopressor load during resuscitation. The long-term effects of different MAP targets need to be evaluated in further studies.
Resumo:
After marked airway obstruction with laryngeal mask (LM) placement in neonate piglets, anatomical observations in cadavers revealed a large epiglottis advancing markedly over the soft palate. CT imaging in vivo confirmed that the LM pushes the epiglottis caudally thereby obstructing the larynx. As a new approach, in 20 piglets a flexible PVC bougie placed under laryngoscopy was used to guide the LM to the correct position at the larynx. Placement of the bougie was easy and the LM was positioned successfully in all piglets at first attempt. In 14 piglets, the epiglottis was positioned dorsal to the soft palate before LM insertion and had to be pushed downwards to advance the bougie. In case of failure of LM placement with potential airway obstruction, the use of a bougie to guide the LM over the epiglottis was simple, rapid, and improved the success rate without complication.
Resumo:
OBJECTIVE In susceptibility-weighted imaging (SWI) in the normal brain, cortical veins appear hypointense due to paramagnetic properties of deoxy-hemoglobin. Global cerebral anoxia decreases cerebral oxygen metabolism, thereby increasing oxy-hemoglobin levels in cerebral veins. We hypothesized that a lower cerebral oxygen extraction fraction in comatose patients with non-neonatal hypoxic ischemic encephalopathy (IHE) produce a pattern of global rarefied or pseudo-diminished cortical veins due to higher oxy-hemoglobin. PURPOSE 1. To investigate the topographic relationship between susceptibility effects in cortical veins and related diffusion restrictions on diffusion-weighted imaging (DWI) in patients with IHE. 2. To relate imaging findings to patterns of altered resting activity on surface EEG. METHODS Twenty-three IHE patients underwent MRI. EEG patterns were used to classify the depth of coma. Regional vs. global susceptibility changes on SWI and patterns of DWI restrictions were compared with the depth of coma. RESULTS All patients exhibited areas of restricted cortical diffusion and SWI abnormalities. The dominant DWI restrictions encompassed widespread areas along the precuneus, frontal and parietal association cortices and basal ganglia. For SWI, nineteen patients had generalized bi-hemispherical patterns, the EEG patterns correlated with coma grades III to V. Four patients had focal decreases of deoxy-hemoglobin following DWI restrictions; associated with normal EEGs. CONCLUSION Focal patterns of diamagnetic effects on SWI according to relative decreases in deoxy-hemoglobin due to reduced metabolic demand are associated with normal EEG in IHE patients. Global patterns indicated increased depth of coma and widespread cortical damage. CLINICAL RELEVANCE The results indicate a potential diagnostic value of SWI in patients with IHE.
Resumo:
Clinical, gross, histopathologic, electron microscopic findings and enzymatic analysis of 4 captive, juvenile springboks (Antidorcas marsupialis) showing both polycystic kidneys and a storage disease are described. Springbok offspring (4 of 34; 12%) were affected by either one or both disorders in a German zoo within a period of 5 years (2008-2013). Macroscopic findings included bilaterally severely enlarged kidneys displaying numerous cysts in 4 animals and superior brachygnathism in 2 animals. Histopathologically, kidneys of 4 animals displayed cystic dilation of the renal tubules. In addition, abundant cytoplasmic vacuoles with a diameter ranging from 2 to 10 μm in neurons of the central and peripheral nervous system, hepatocytes, thyroid follicular epithelial cells, pancreatic islets of Langerhans and renal tubular cells were found in 2 springbok neonates indicative of an additional storage disease. Ultrastructurally, round electron-lucent vacuoles, up to 4 μm in diameter, were present in neurons. Enzymatic analysis of liver and kidney tissue of 1 affected springbok revealed a reduced activity of total hexosaminidase (Hex) with relatively increased HexA activity at the same level of total Hex, suggesting a hexosaminidase defect. Pedigree analysis suggested a monogenic autosomal recessive inheritance for both diseases. In summary, related springboks showed 2 different changes resembling both polycystic kidney and a GM2 gangliosidosis similar to the human Sandhoff disease. Whether the simultaneous occurrence of these 2 entities represents an incidental finding or has a genetic link needs to be investigated in future studies.
Resumo:
BACKGROUND The activation of multiple pro- and anti-inflammatory mediators is a key feature in the pathophysiology of sepsis. Many of these mediators may directly contribute to organ dysfunction and determine disease severity. So far our ability to modulate these upregulated mediator pathways is very limited. Therefore the adsorption of such mediators via an extracorporeal circuit may be a beneficial intervention during sepsis. OBJECTIVES Recent technical innovations have made this intervention feasible. Both systems for exclusive mediator adsorption and for adsorption beside a conventional renal replacement therapy are now available. Some of the membranes can adsorb a broad range of mediators by rather unspecific binding, whereas others specifically adsorb endotoxin or mediators. DISCUSSION Whilst biochemical efficacy could be demonstrated by some of the systems, controlled and randomized studies demonstrating improved clinical endpoints are still lacking. Therefore the use of such therapies outside clinical studies cannot yet be recommended.