964 resultados para Selectin Glycoprotein Ligand-1
Resumo:
Solid tumours display a complex drug resistance phenotype that involves inherent and acquired mechanisms. Multicellular resistance is an inherent feature of solid tumours and is known to present significant barriers to drug permeation in tumours. Given this barrier, do acquired resistance mechanisms such as P-glycoprotein (P-gp) contribute significantly to resistance? To address this question, the multicellular tumour spheroid (MCTS) model was used to examine the influence of P-gp on drug distribution in solid tissue. Tumour spheroids (TS) were generated from either drug-sensitive MCF7WT cells or a drug-resistant, P-gp-expressing derivative MCF7Adr. Confocal microscopy was used to measure time courses and distribution patterns of three fluorescent compounds; calcein-AM, rhodamine123 and BODIPY-taxol. These compounds were chosen because they are all substrates for P-gp-mediated transport, exhibit high fluorescence and are chemically dissimilar. For example, BODIPY-taxol and rhodamine 123 showed high accumulation and distributed extensively throughout the TSWT, whereas calcein-AM accumulation was restricted to the outermost layers. The presence of P-gp in TSAdr resulted in negligible accumulation, regardless of the compound. Moreover, the inhibition of P-gp by nicardipine restored intracellular accumulation and distribution patterns to levels observed in TSWT. The results demonstrate the effectiveness of P-gp in modulating drug distribution in solid tumour models. However, the penetration of agents throughout the tissue is strongly determined by the physico-chemical properties of the individual compounds.
Resumo:
The transmembrane domain proteins of the claudin superfamily are the major structural components of cellular tight junctions. One family member, claudin-1, also associates with tetraspanin CD81 as part of a receptor complex that is essential for hepatitis C virus (HCV) infection of the liver. To understand the molecular basis of claudin-1/CD81 association we previously produced and purified milligram quantities of functional, full-length CD81, which binds a soluble form of HCV E2 glycoprotein (sE2). Here we report the production, purification and characterization of claudin-1. Both yeast membrane-bound and detergent-extracted, purified claudin-1 were antigenic and recognized by specific antibodies. Analytical ultracentrifugation demonstrated that extraction with n-octyl-ß-d-glucopyranoside yielded monodispersed, dimeric pools of claudin-1 while extraction with profoldin-8 or n-decylphosphocholine yielded a dynamic mixture of claudin-1 oligomers. Neither form bound sE2 in line with literature expectations, while further functional analysis was hampered by the finding that incorporation of claudin-1 into proteoliposomes rendered them intractable to study. Dynamic light scattering demonstrated that claudin-1 oligomers associate with CD81 in vitro in a defined molar ratio of 1:2 and that complex formation was enhanced by the presence of cholesteryl hemisuccinate. Attempts to assay the complex biologically were limited by our finding that claudin-1 affects the properties of proteoliposomes. We conclude that recombinant, correctly-folded, full-length claudin-1 can be produced in yeast membranes, that it can be extracted in different oligomeric forms that do not bind sE2 and that a dynamic preparation can form a specific complex with CD81 in vitro in the absence of any other cellular components. These findings pave the way for the structural characterization of claudin-1 alone and in complex with CD81.
Resumo:
Loss of adipose tissue in cancer cachexia has been associated with tumour production of a lipid-mobilizing factor (LMF) which has been shown to be homologous with the plasma protein zinc-a2-glycoprotein (ZAG). The aim of this study was to compare the ability of human ZAG with LMF to stimulate lipolysis in vitro and induce loss of body fat in vivo, and to determine the mechanisms involved. ZAG was purified from human plasma using a combination of Q Sepharose and Superdex 75 chromatography, and was shown to stimulate glycerol release from isolated murine epididymal adipocytes in a dose-dependent manner. The effect was enhanced by the cyclic AMP phosphodiesterase inhibitor Ro20-1724, and attenuated by freeze/thawing and the specific ß3-adrenoreceptor antagonist SR59230A. In vivo ZAG caused highly significant, time-dependent, decreases in body weight without a reduction in food and water intake. Body composition analysis showed that loss of body weight could be attributed entirely to the loss of body fat. Loss of adipose tissue may have been due to the lipolytic effect of ZAG coupled with an increase in energy expenditure, since there was a dose-dependent increase in expression of uncoupling protein-1 (UCP-1) in brown adipose tissue. These results suggest that ZAG may be effective in the treatment of obesity.
Resumo:
The plasma protein zinc-α2-glycoprotein (ZAG) has been shown to be identical with a lipid mobilizing factor capable of inducing loss of adipose tissue in cancer cachexia through an increased lipid mobilization and utilization. The ability of ZAG to induce uncoupling protein (UCP) expression has been determined using in vitro models of adipose tissue and skeletal muscle. ZAG induced a concentration-dependent increase in the expression of UCP-1 in primary cultures of brown, but not white, adipose tissue, and this effect was attenuated by the β3-adrenergic receptor (β3-AR) antagonist SR59230A. A 6.5-fold increase in UCP-1 expression was found in brown adipose tissue after incubation with 0.58 μM ZAG. ZAG also increased UCP-2 expression 3.5-fold in C2C12 murine myotubes, and this effect was also attenuated by SR59230A and potentiated by isobutylmethylxanthine, suggesting a cyclic AMP-mediated process through interaction with a β3-AR. ZAG also produced a dose-dependent increase in UCP-3 in murine myotubes with a 2.5-fold increase at 0.58 μM ZAG. This effect was not mediated through the β3-AR, but instead appeared to require mitogen activated protein kinase. These results confirm the ability of ZAG to directly influence UCP expression, which may play an important role in lipid utilization during cancer cachexia. © 2004 Elsevier Ireland Ltd. All rights reserved.
Resumo:
A series of novel polymeric compounds of formula [M(btzb)3][ClO4]2 (Mll = Fe, Ni or Cu) with btzb = 1,4-bis-(tetrazol-1-yl)butane have been prepared and their physical properties investigated. The btzb ligand has been prepared and its crystal structure determined, together with a tentative crystal structure of the 3-D compound [Fe(btzb)3][ClO4]2. The model of the latter shows two symmetry-related, interpenetrating Fe-btzb networks in which the iron(II) ions approach each other as close as 8.3 and 9.1 Å. This supramolecular catenane undergoes a sharp thermal spin transition around 160 K with hysteresis (20 K) along with a pronounced thermochromic effect. The spin crossover behaviour has been followed by magnetic, DSC, optical spectroscopy and 57Fe Mössbauer spectroscopy measurements. Irradiation with green light at low temperature leads to population of the metastable high-spin state for the thermally active iron(ll) ions. The nature of the spin crossover behaviour has been discussed in detail.
Resumo:
A multinuclear Fe-Mn-Cr complex with 4-amino-1,2,4-triazole (NH2trz) and oxalate (ox) ligands has been synthesized successfully. The formula of the [Fe(NH2trz)3][ClO4][MnCr(ox)3].4H2O complex has been obtained based on the metal and C, H, N contents. The presence of water molecules, metal-ligand bonding and bridge ligand in the multinuclear complex has been confirmed by its infrared spectrum. The compound crystallizes in the hexagonal system with cell parameters of a = b = 18.695 Å and c = 57.351 Å. The compound shows a gradual spin crossover for iron(II) in the [Fe(NH2trz)3]2+ with transition temperature (T1/2) of 205 K. The antiferromagnetic interaction between Cr(III) and Mn(II) ions in the [MnCr(ox)3]n n- network is observed from the Weiss constant (θ) of –2.3 K.
Resumo:
Background and Purpose The glucagon-like peptide 1 (GLP-1) receptor performs an important role in glycaemic control, stimulating the release of insulin. It is an attractive target for treating type 2 diabetes. Recently, several reports of adverse side effects following prolonged use of GLP-1 receptor therapies have emerged: most likely due to an incomplete understanding of signalling complexities. Experimental Approach We describe the expression of the GLP-1 receptor in a panel of modified yeast strains that couple receptor activation to cell growth via single Gα/yeast chimeras. This assay enables the study of individual ligand-receptor G protein coupling preferences and the quantification of the effect of GLP-1 receptor ligands on G protein selectivity. Key Results The GLP-1 receptor functionally coupled to the chimeras representing the human Gαs, Gαi and Gαq subunits. Calculation of the dissociation constant for a receptor antagonist, exendin-3 revealed no significant difference between the two systems. We obtained previously unobserved differences in G protein signalling bias for clinically relevant therapeutic agents, liraglutide and exenatide; the latter displaying significant bias for the Gαi pathway. We extended the use of the system to investigate small-molecule allosteric compounds and the closely related glucagon receptor. Conclusions and Implications These results provide a better understanding of the molecular events involved in GLP-1 receptor pleiotropic signalling and establish the yeast platform as a robust tool to screen for more selective, efficacious compounds acting at this important class of receptors in the future. © 2014 The Authors. British Journal of Pharmacology published by John Wiley & Sons Ltd on behalf of The British Pharmacological Society.
Resumo:
Vascular endothelial growth factor-A (VEGF) is critical for angiogenesis but fails to induce neovascularization in ischemic tissue lesions in mice lacking endothelial nitric oxide synthase (eNOS). VEGF receptor-2 (VEGFR-2) is critical for angiogenesis, although little is known about the precise role of endothelial VEGFR-1 and its downstream effectors in this process. Here we have used a chimeric receptor approach in which the extracellular domain of the epidermal growth factor receptor was substituted for that of VEGFR-1 (EGLT) or VEGFR-2 (EGDR) and transduced into primary cultures of human umbilical vein endothelial cells (HUVECs) using a retroviral system. Activation of HUVECs expressing EGLT or EGDR induced rapid phosphorylation of eNOS at Ser1177, release of NO, and formation of capillary networks, similar to VEGF. Activation of eNOS by VEGFR-1 was dependent on Tyr794 and was mediated via phosphatidylinositol 3-kinase, whereas VEGFR-2 Tyr951 was involved in eNOS activation via phospholipase Cgamma1. Consistent with these findings, the VEGFR-1-specific ligand placenta growth factor-1 activated phosphatidylinositol 3-kinase and VEGF-E, which is selective for VEGFR-2-activated phospholipase Cgamma1. Both VEGFR-1 and VEGFR-2 signal pathways converged on Akt, as dominant-negative Akt inhibited the NO release and in vitro tube formation induced following activation of EGLT and EGDR. The identification Tyr794 of VEGFR-1 as a key residue in this process provides direct evidence of endothelial VEGFR-1 in NO-driven in vitro angiogenesis. These studies provide new sites of modulation in VEGF-mediated vascular morphogenesis and highlight new therapeutic targets for management of vascular diseases.
Resumo:
Preeclampsia is a hypertensive disorder of pregnancy caused by abnormal placental function, partly because of chronic hypoxia at the utero-placental junction. The increase in levels of soluble vascular endothelial growth factor receptor 1, an antiangiogenic agent known to inhibit placental vascularization, is an important cellular factor implicated in the onset of preeclampsia. We investigated the ligand urotensin II (U-II), a potent endogenous vasoconstrictor and proangiogenic agent, for which levels have been reported to increase in patients with preeclampsia. We hypothesized that an increased sensitivity to U-II in preeclampsia might be achieved by upregulation of placental U-II receptors. We further investigated the role of U-II receptor stimulation on soluble vascular endothelial growth factor receptor 1 release in placental explants from diseased and normal patients. Immunohistochemistry, real-time PCR, and Western blotting analysis revealed that U-II receptor expression was significantly upregulated in preeclampsia placentas compared with controls (P<0.01). Cellular models of syncytiotrophoblast and vascular endothelial cells subjected to hypoxic conditions revealed an increase in U-II receptor levels in the syncytiotrophoblast model. This induction is regulated by the transcriptional activator hypoxia-inducible factor 1a. U-II treatment is associated with increased secretion of soluble vascular endothelial growth factor receptor 1 only in preeclamptic placental explants under hypoxia but not in control conditions. Interestingly, normal placental explants did not respond to U-II stimulation.
Resumo:
Background - The P-glycoprotein (P-gp), an ATP binding cassette transmembrane transporter, is expressed by astrocytes in the adult brain, and is positively modulated during astrogliosis. In a search for factors involved in this modulation, P-gp overexpression was studied in long-term in vitro astroglial cultures. Results - Surprisingly, most factors that are known to induce astroglial activation in astroglial cultures failed to increase P-gp expression. The only effective proteins were IFNγ and those belonging to the IL-6 family of cytokines (IL-6, LIF, CT-1 and CNTF). As well as P-gp expression, the IL-6 type cytokines - but not IFNγ - stimulated the expression of endogenous CNTF in astrocytes. In order to see whether an increased intracellular level of CNTF was necessary for induction of P-gp overexpression by IL-6 type cytokines, by the same cytokines analysis was carried out on astrocytes obtained from CNTF knockout mice. In these conditions, IFNγ produced increased P-gp expression, but no overexpression of P-gp was observed with either IL-6, LIF or CT-1, pointing to a role of CNTF in the intracellular signalling pathway leading to P-gp overexpression. In agreement with this suggestion, application of exogenous CNTF -which is internalised with its receptor - produced an overexpression of P-gp in CNTF-deficient astrocytes. Conclusions - These results reveal two different pathways regulating P-gp expression and activity in reactive astrocytes, one of which depends upon the intracellular concentration of CNTF. This regulation of P-gp may be one of the long searched for physiological roles of CNTF.
Resumo:
The 5-HT7 receptor is linked with various CNS disorders. Using an automated solution phase synthesis a combinatorial library of 384 N-substituted N-[1-methyl-3-(4-methylpiperidin-1-yl)propyl]-arylsulfonamides was prepared with 24 chemically diverse amines 1-24 and 16 sulfonyl chlorides A-P. The chemical library of alkylated sulfonamides was evaluated in a receptor binding assay with [3]H-5-CT as ligand. The key synthetic step was the alkylation of a sulfonamide with iodide E, which was prepared from butanediol in 4 synthetic steps. The target compounds 1A, 1B .....24A ... 24P were purified by solvent extraction on a Teacan liquid handling system. Sulfonamide J20, B23, D23, G23, G23, J23 , I24 and O24 displayed a binding affinity IC50 between 100 nM and 10 nM. The crystalline J20 (IC50=39 nM) and O24 (IC50=83 nM) were evaluated further in the despair swimming test and the tail suspension assay. A significant antidepressant activity was found in mice of a greater magnitude than imipramine and fluoxetine at low doses. © 2006 Bentham Science Publishers Ltd.
Resumo:
Ligand-directed signal bias offers opportunities for sculpting molecular events, with the promise of better, safer therapeutics. Critical to the exploitation of signal bias is an understanding of the molecular events coupling ligand binding to intracellular signaling. Activation of class B G protein-coupled receptors is driven by interaction of the peptide N terminus with the receptor core. To understand how this drives signaling, we have used advanced analytical methods that enable separation of effects on pathway-specific signaling from those that modify agonist affinity and mapped the functional consequence of receptor modification onto three-dimensional models of a receptor-ligand complex. This yields molecular insights into the initiation of receptor activation and the mechanistic basis for biased agonism. Our data reveal that peptide agonists can engage different elements of the receptor extracellular face to achieve effector coupling and biased signaling providing a foundation for rational design of biased agonists.
Resumo:
The immune system is composed of innate and adaptive mechanisms. Innate immune responses are significantly modulated by immunomodulatory factors that act through the induction of specific patterns of cytokine production in responding cells. Human leukocytes have been shown to respond to substance(s) present in acid extracts of commercial shark cartilage (SC). Shark cartilage is a food supplement taken by consumers as a prophylaxis and for the treatment of conditions ranging from arthritis to cancer. No reliable scientific evidence in the literature supports the alleged usefulness of shark cartilage supplements, but their use remains popular. Cartilage extracts exhibit immunomodulatory properties by inducing various inflammatory, Th1-type cytokines and potent chemokines in human peripheral blood leukocytes (HPBL) in vitro. The objectives of the study were to (1) to determine the nature of the active component(s), (2) to define the scope of cellular response to SC extract, and (3) to elucidate the molecular mechanisms underlying bioactivity. Results showed that there are at least two cytokine-inducing components which are acid stable. One anionic component has been identified as a small (14-21 kDa) glycoprotein with at least 40% carbohydrate content. Shark cartilage stimulated HPBL to produce cytokines resembling an inflammatory, Th1 polarized response. Leukocyte-specific responses consist of both initial cytokine responses to SC directly (i.e., TNF-α) and secondary responses such as the IFN-γ response by lymphocytes following initial SC stimulation. Response of RAW cells, a murine macrophage cell line, indicated that TNF-á could be induced in macrophages of another mammalian species in the absence of other cell types. The results suggest that the human monocyte/macrophage is most likely to be the initial responding cell to SC stimulation. Stimulation of cells appears to engage at least one ligand-receptor interaction with TLR 4, although the role of TLR 2 cannot be ruled out. Initial activation is likely followed by the activation of the JNK and p38 MAPK signal transduction pathways resulting in activation, release, and translocation of transcription factor nuclear factor κB (Nf-κB). This dissertation research study represents the first in-depth study into characterizing the bioactive component(s) of commercial shark cartilage responsible for its immunomodulating properties and defining cellular responses at the molecular level.
Resumo:
Neuroglobin (Ngb) and cytoglobin (Cygb) are two new additions to the globin family, exhibiting heme iron hexa-coordination, a disulfide bond and large internal cavities. These proteins are implicated in cytoprotection under hypoxic-ischemic conditions, but the molecular basis of their cytoprotective function is unclear. Herein, a photothermal and spectroscopic study of the interactions of diatomic ligands with Ngb, Cygb, myoglobin and hemoglobin is presented. The impact of the disulfide bond in Ngb and Cygb and role of conserved residues in Ngb His64, Val68, Cys55, Cys120 and Tyr44 on conformational dynamics associated with ligand binding/dissociation were investigated. Transient absorption and photoacoustic calorimetry studies indicate that CO photo-dissociation from Ngb leads to a volume expansion (13.4±0.9 mL mol-1), whereas a smaller volume change was determined for Ngb with reduced Cys (ΔV=4.6±0.3 mL mol-1). Furthermore, Val68 side chain regulates ligand migration between the distal pocket and internal hydrophobic cavities since Val68Phe geminate quantum yield is ∼2.7 times larger than that of WT Ngb. His64Gln and Tyr44Phe mutations alter the thermodynamic parameters associated with CO photo-release indicating that electrostatic/hydrogen binding network that includes heme propionate groups, Lys 67, His64, and Tyr 44 in Ngb modulates the energetics of CO photo-dissociation. In Cygb, CO escape from the protein matrix is fast (< 40 ns) with a ΔH of 18±2 kcal mol-1 in Cygbred, whereas disulfide bridge formation promotes a biphasic ligand escape associated with an overall enthalpy change of 9±4 kcal mol-1. Therefore, the disulfide bond modulates conformational dynamics in Ngb and Cygb. I propose that in Cygb with reduced Cys the photo-dissociated ligand escapes through the hydrophobic tunnel as occurs in Ngb, whereas the CO preferentially migrates through the His64 gate in Cygbox. To characterize Cygb surface 1,8-ANS interactions with Cygb were investigated employing fluorescence spectroscopy, ITC and docking simulations. Two 1,8-ANS binding sites were identified. One binding site is located close to the extended N-terminus of Cygb and was also identified as a binding site for oleate. Furthermore, guanidinium hydrochloride-induced unfolding studies of Cygb reveal that the disulfide bond does not impact Cygb stability, whereas binding of cyanide slightly increases the protein stability.
Resumo:
Receptor-tyrosine kinases (RTKs) are membrane bound receptors characterized by their intrinsic kinase activity. RTK activities play an essential role in several human diseases, including cancer, diabetes and neurodegenerative diseases. RTK activities have been regulated by the expression or silencing of several genes as well as by the utilization of small molecules. Ras Interference 1 (Rin1) is a multifunctional protein that becomes associated with activated RTKs upon ligand stimulation. Rin1 plays a key role in receptor internalization and in signal transduction via activation of Rab5 and association with active form of Ras. This study has two main objectives: (1) It determines the role of Rin1 in the regulation of several RTKs focusing on insulin receptor. This was accomplished by studying the Rin1-insulin receptor interaction using a variety of biochemical and morphological assays. This study shows a novel interaction between the insulin receptor and Rin1 through the Vps9 domain. Two more RTKs (epidermal growth factor receptor and nerve growth factor receptor) also interacted with the SH2 domain of Rin1. The effect of the Rin1-RTK interaction on the activation of both Rab5 and Ras was also studied during receptor internalization and intracellular signaling. Finally, the role of Rin1 was examined in two differentiation processes (adipogenesis and neurogenesis). Rin1 showed a strong inhibitory effect on 3T3-L1 preadipocyte differentiation but it seems to show a modest effect in PC12 neurite outgrowth. These data indicate a selective function and specific interaction of Rin1 toward RTKs. (2) It examines the role of the small molecule Dehydroleucodine (DhL) on several key signaling molecules during adipogenesis. This was accomplished by studying the differentiation of 3T3-L1 preadipocytes exposed to different concentrations of DhL in different days of the adipocyte formation process. The results indicate that DhL selectively blocked adipocyte formation, as well as the expression of PPARγ, and C/EBP&agr;. However, DhL treatment did not affect Rin1 or Rab5 expression and their activities. Taken together, the data indicate a potential molecular mechanism by which proteins or small molecules regulate selective and specific RTK intracellular membrane trafficking and signaling during cell growth and differentiation in normal and pathological conditions.