996 resultados para Seedling field emergence
Resumo:
Antonio Damasio's works have brought emotions into line with current trends in neuroscience. They are conceived as the addition, to a perception, of the somatic effects it has induced. Nevertheless, this continuous and relatively steady process of body perception has also led to the less-known hypothesis of the "neural self." Behind the explicit and apparently contradictory reference to William James and Sigmund Freud, there lies a common source: Theodor Meynert's conception of a "cortical self." Our aim is to enlight a stream unified around what we call here "cerebral self." The Self is thus considered as the cerebral projection or presentation of the body. The specificity of this notion is particularly highlighted by its confrontation to the closely, yet disembodied, notion of "cerebral subject.". Pour citer cette revue : Psychiatr. Sci. Hum. Neurosci. 9 (2011).
Resumo:
The water-frog L-E system, widespread in Western Europe, comprises the pool frog Pelophylax lessonae and the hybridogenetic edible frog P. esculentus, which originated from hybridization between pool frogs and marsh frogs (P. ridibundus). In P. esculentus, the lessonae (L) genome is eliminated during meiosis and has to be gained anew each generation from a P. lessonae partner, while the ridibundus (R') genome is transmitted clonally. It therefore accumulates deleterious mutations, so that R'R' offspring from P. esculentus x P. esculentus crosses are normally unviable. This system is now threatened by invasive P. ridibundus (RR) imported from Eastern Europe and the Balkans. We investigated the genetic interactions between invasive marsh frogs and native water frogs in a Swiss wetland area, and used genetic data collected in the field to validate several components of a recently postulated mechanism of species replacement. We identified neo-ridibundus individuals derived from crosses between invasive ridibundus and native esculentus, as well as newly arisen hybridogenetic esculentus lineages stemming from crosses between invasive ridibundus (RR) and native lessonae (LL). As their ridibundus genomes are likely to carry less deleterious mutations, such lineages are expected to produce viable ridibundus offspring, contributing to species replacement. However, such crosses with invasive ridibundus only occurred at a limited scale; moreover, RR x LL crosses did not induce any introgression from the ridibundus to the lessonae genome. We did not find any ridibundus stemming from crosses between ancient esculentus lineages. Despite several decades of presence on the site, introduced ridibundus individuals only represent 15% of sampled frogs, and their spatial distribution seems shaped by specific ecological requirements rather than history of colonization. We therefore expect the three taxa to coexist stably in this area.
Resumo:
Phytochromes are red/far-red photosensors that regulate numerous developmental programs in plants. Among them, phytochrome A (phyA) is essential to enable seedling de-etiolation under continuous far-red (FR) light, a condition that mimics the environment under a dense canopy. The ecological relevance of this response is demonstrated by the high mortality rate of phyA mutant plants that germinate in deep vegetational shade. phyA signaling involves direct interaction of the photoreceptor with phytochrome-interacting factors PIF1 and PIF3, members of the bHLH transcription factor family. Here we investigated the involvement of PIF4 and PIF5 in phyA signaling, and found that they redundantly control de-etiolation in FR light. The pif4 pif5 double mutant is hypersensitive to low fluence rates of FR light. This phenotype is dependent on FR light perception by phyA, but does not rely on alterations in the phyA level. Our microarray analysis shows that PIF4 and PIF5 are part of an inhibitory mechanism that represses the expression of some light-responsive genes in the dark, and that they are also needed for full expression of several growth-related genes in the light. Unlike PIF1 and PIF3, PIF4 and PIF5 are not degraded in response to FR light, indicating that they are light-regulated by a different mechanism. Our genetic analysis suggests that this is achieved through sequestration of these PIFs by the closely related bHLH transcription factor HFR1 (long hypocotyl in FR light).
Resumo:
Pseudomonas aeruginosa undergoes spontaneous mutation that impairs secretion of several extracellular enzymes during extended cultivation in vitro in rich media, as well as during long-term colonization of the cystic fibrosis lung. A frequent type of strong secretion deficiency is caused by inactivation of the quorum-sensing regulatory gene lasR. Here we analyzed a spontaneously emerging subline of strain PAO1 that exhibited moderate secretion deficiency and partial loss of quorum-sensing control. Using generalized transduction, we mapped the secretion defect to the vfr gene, which is known to control positively the expression of the lasR gene and type II secretion of several proteases. We confirmed this secretion defect by sequencing and complementation of the vfr mutation. In a reconstruction experiment conducted with a 1:1 mixture of wild-type strain PAO1 and a vfr mutant of PAO1, we observed that the vfr mutant had a selective advantage over the wild type after growth in static culture for 4 days. Under these conditions, spontaneous vfr emerged in a strain PAO1 population after four growth cycles, and these mutants accounted for more than 40% of the population after seven cycles. These results suggest that partial or complete loss of quorum sensing and secretion can be beneficial to P. aeruginosa under certain environmental conditions.
Resumo:
The timing of N application to maize is a key factor to be considered in no-till oat/maize sequential cropping. This study aimed to evaluate the influence of pre-planting, planting and sidedress N application on oat residue decomposition, on soil N immobilisation and remineralisation and on N uptake by maize plants in no-till oat/maize sequential cropping. Undisturbed soil cores of 10 and 20 cm diameter were collected from the 0-15 cm layer of a no-till Red Latossol, when the oat cover crop was in the milk-grain stage. Two greenhouse experiments were conducted simultaneously. Experiment A, established in the 10 cm diameter cores and without plant cultivation, was used to asses N dynamics in soil and oat residues. Experiment B, established in the 20 cm diameter cores and with maize cultivation, was used to assess plant growth and N uptake. An amount of 6.0 Mg ha-1 dry matter of oat residues was spread on the surface of the cores. A rate of 90 kg N ha-1 applied as ammonium sulphate in both experiments was split in pre-planting, planting and sidedress applications as follows: (a) 00-00-00 (control), (b) 90-00-00 (pre-planting application, 20 days before planting), (c) 00-90-00 (planting application), (d) 00-30-60 (split in a planting and a sidedress application 31 days after emergence), (e) 00-00-00* (control, without oat residue) and (f) 90-00-00* (pre-planting application, without oat residue). The N concentration and N content in oat residues were not affected during decomposition by N fertilisation. Most of the fertiliser NH4+-N was converted into NO3--N within 20 days after application. A significant decrease in NO3--N contents in the 0-4 cm layer was observed in all treatments between 40 and 60 days after the oat residue placement on the soil surface, suggesting the occurrence of N immobilisation in this period. Considering that most of the inorganic N was converted into NO3- and that no immobilisation of the pre planting fertiliser N occurred at the time of its application, it was possible to conclude that pre-planting applied N was prone to losses by leaching. On the other hand, with split N applications, maize plants showed N deficiency symptoms before sidedress application. Two indications for fertiliser-N management in no-till oat/maize sequential cropping could be suggested: (a) in case of split application, the sidedress should be earlier than 30 days after emergence, and (b) if integral application is preferred to save field operations, this should be done at planting.
Resumo:
Selostus: Niittyluteiden esiintyminen viljelykasveissa kasvukauden eri aikoina
Resumo:
An extensive study of the central part of the Sesia Lanzo Zone has been undertaken to identify pre-Alpine protoliths and to reconstruct the lithologic and tectonic setting of this part of the Western Alps. Three main complexes have been defined: 1) the Polymetamorphic Basement Complex, corresponding to the lower unit of the Sesia Lanzo Zone after COMPAGNONI et al. (1977), is further subdivided into the three following units: a) an Internal Unit characterized by eo-Alpine high pressure (HP) assemblages (DAL PIAZ et al., 1972) (Eclogitic Micaschists); b) an Intermediate Unit where HP parageneses are partially re-equilibrated under greenschist conditions and c) an External Unit where the main foliation is defined by a greenschist paragenesis (Gneiss Minuti auct.). 2) the Monometamorphic Cover Complex, subdivided into the followings: a) the Bonze Unit, composed of sheared metagabbros, eclogitized metabasalts with MORB geochemical affinity and related metasediments (micaschists, quartzites and Mn-cherts) and b) the Scalaro Unit, containing predominantly metasediments of supposed Permo-Triassic age (yellow dolomitic marbles, calcschists and conglomeratic limestones, micaschists and quartzites with thin levels of basic rocks with within plate basalts [WPB] geochimical affinity). Multiple lithostratigraphic sequences for the Monometamorphic Cover Complex are proposed. The contact between the Bonze and Scalaro Units is defined by repetitions of dolomitic marbles and metabasalts; the ages of the metasediments have been assigned solely by analogy with other sediments of the Western Alps, due to the absence of fossils. The Monometamorphic Cover Complex can be considered as the autochthonous cover of the Sesia Lanzo Zone because of the primary contacts with the basement and because of the presence of preAlpine HT basement blocks in the cover sequences. 3) The pre-Alpine high temperature (HT) Basement Complex (or `'Seconda Zona Diorito-Kinzigitica''), comprises HT Hercynian rocks like kinzigites, amphibolites, granulites and calcite marbles; this Complex is always located between the Internal and the External Units and can be followed continuously for several kilometers south of the Gressoney Valley to the Orco Valley. A schematic evolution for the Sesia Lanzo Zone is proposed; based on available data together with new geochronological data, this study shows that the internal and external parts of the polymetamorphic basement of the Sesia Zone experienced different cooling histories .
Resumo:
Background and Aims Paleoclimatic data indicate that an abrupt climate change occurred at the Eocene-Oligocene (E-O) boundary affecting the distribution of tropical forests on Earth. The same period has seen the emergence of South-East (SE) Asia, caused by the collision of the Eurasian and Australian plates. How the combination of these climatic and geomorphological factors affected the spatio-temporal history of angiosperms is little known. This topic is investigated by using the worldwide sapindaceous clade as a case study. Methods Analyses of divergence time inference, diversification and biogeography (constrained by paleogeography) are applied to a combined plastid and nuclear DNA sequence data set. Biogeographical and diversification analyses are performed over a set of trees to take phylogenetic and dating uncertainty into account. Results are analysed in the context of past climatic fluctuations. Key Results An increase in the number of dispersal events at the E-O boundary is recorded, which intensified during the Miocene. This pattern is associated with a higher rate in the emergence of new genera. These results are discussed in light of the geomorphological importance of SE Asia, which acted as a tropical bridge allowing multiple contacts between areas and additional speciation across landmasses derived from Laurasia and Gondwana. Conclusions This study demonstrates the importance of the combined effect of geomorphological (the emergence of most islands in SE Asia approx. 30 million years ago) and climatic (the dramatic E-O climate change that shifted the tropical belt and reduced sea levels) factors in shaping species distribution within the sapindaceous clade.
Resumo:
Selostus: Lannoituksen pitkäaikaiset kenttäkokeet: kolmen matemaattisen mallin vertailu
Resumo:
Selostus: Vanhojen ja uusien kauralajikkeiden reagointi kuivuuteen kasvihuone- ja peltokokeissa