998 resultados para Seed classification
Resumo:
Urothelial cancer (UC) is highly recurrent and can progress from non-invasive (NMIUC) to a more aggressive muscle-invasive (MIUC) subtype that invades the muscle tissue layer of the bladder. We present a proof of principle study that network-based features of gene pairs can be used to improve classifier performance and the functional analysis of urothelial cancer gene expression data. In the first step of our procedure each individual sample of a UC gene expression dataset is inflated by gene pair expression ratios that are defined based on a given network structure. In the second step an elastic net feature selection procedure for network-based signatures is applied to discriminate between NMIUC and MIUC samples. We performed a repeated random subsampling cross validation in three independent datasets. The network signatures were characterized by a functional enrichment analysis and studied for the enrichment of known cancer genes. We observed that the network-based gene signatures from meta collections of proteinprotein interaction (PPI) databases such as CPDB and the PPI databases HPRD and BioGrid improved the classification performance compared to single gene based signatures. The network based signatures that were derived from PPI databases showed a prominent enrichment of cancer genes (e.g., TP53, TRIM27 and HNRNPA2Bl). We provide a novel integrative approach for large-scale gene expression analysis for the identification and development of novel diagnostical targets in bladder cancer. Further, our method allowed to link cancer gene associations to network-based expression signatures that are not observed in gene-based expression signatures.
Resumo:
A importância e preocupação dedicadas à autonomia e independência das pessoas idosas e dos pacientes que sofrem de algum tipo de deficiência tem vindo a aumentar significativamente ao longo das últimas décadas. As cadeiras de rodas inteligentes (CRI) são tecnologias que podem ajudar este tipo de população a aumentar a sua autonomia, sendo atualmente uma área de investigação bastante ativa. Contudo, a adaptação das CRIs a pacientes específicos e a realização de experiências com utilizadores reais são assuntos de estudo ainda muito pouco aprofundados. A cadeira de rodas inteligente, desenvolvida no âmbito do Projeto IntellWheels, é controlada a alto nível utilizando uma interface multimodal flexível, recorrendo a comandos de voz, expressões faciais, movimentos de cabeça e através de joystick. Este trabalho teve como finalidade a adaptação automática da CRI atendendo às características dos potenciais utilizadores. Foi desenvolvida uma metodologia capaz de criar um modelo do utilizador. A investigação foi baseada num sistema de recolha de dados que permite obter e armazenar dados de voz, expressões faciais, movimentos de cabeça e do corpo dos pacientes. A utilização da CRI pode ser efetuada em diferentes situações em ambiente real e simulado e um jogo sério foi desenvolvido permitindo especificar um conjunto de tarefas a ser realizado pelos utilizadores. Os dados foram analisados recorrendo a métodos de extração de conhecimento, de modo a obter o modelo dos utilizadores. Usando os resultados obtidos pelo sistema de classificação, foi criada uma metodologia que permite selecionar a melhor interface e linguagem de comando da cadeira para cada utilizador. A avaliação para validação da abordagem foi realizada no âmbito do Projeto FCT/RIPD/ADA/109636/2009 - "IntellWheels - Intelligent Wheelchair with Flexible Multimodal Interface". As experiências envolveram um vasto conjunto de indivíduos que sofrem de diversos níveis de deficiência, em estreita colaboração com a Escola Superior de Tecnologia de Saúde do Porto e a Associação do Porto de Paralisia Cerebral. Os dados recolhidos através das experiências de navegação na CRI foram acompanhados por questionários preenchidos pelos utilizadores. Estes dados foram analisados estatisticamente, a fim de provar a eficácia e usabilidade na adequação da interface da CRI ao utilizador. Os resultados mostraram, em ambiente simulado, um valor de usabilidade do sistema de 67, baseado na opinião de uma amostra de pacientes que apresentam os graus IV e V (os mais severos) de Paralisia Cerebral. Foi também demonstrado estatisticamente que a interface atribuída automaticamente pela ferramenta tem uma avaliação superior à sugerida pelos técnicos de Terapia Ocupacional, mostrando a possibilidade de atribuir automaticamente uma linguagem de comando adaptada a cada utilizador. Experiências realizadas com distintos modos de controlo revelaram a preferência dos utilizadores por um controlo compartilhado com um nível de ajuda associado ao nível de constrangimento do paciente. Em conclusão, este trabalho demonstra que é possível adaptar automaticamente uma CRI ao utilizador com claros benefícios a nível de usabilidade e segurança.
Resumo:
Nos últimos anos temos vindo a assistir a uma mudança na forma como a informação é disponibilizada online. O surgimento da web para todos possibilitou a fácil edição, disponibilização e partilha da informação gerando um considerável aumento da mesma. Rapidamente surgiram sistemas que permitem a coleção e partilha dessa informação, que para além de possibilitarem a coleção dos recursos também permitem que os utilizadores a descrevam utilizando tags ou comentários. A organização automática dessa informação é um dos maiores desafios no contexto da web atual. Apesar de existirem vários algoritmos de clustering, o compromisso entre a eficácia (formação de grupos que fazem sentido) e a eficiência (execução em tempo aceitável) é difícil de encontrar. Neste sentido, esta investigação tem por problemática aferir se um sistema de agrupamento automático de documentos, melhora a sua eficácia quando se integra um sistema de classificação social. Analisámos e discutimos dois métodos baseados no algoritmo k-means para o clustering de documentos e que possibilitam a integração do tagging social nesse processo. O primeiro permite a integração das tags diretamente no Vector Space Model e o segundo propõe a integração das tags para a seleção das sementes iniciais. O primeiro método permite que as tags sejam pesadas em função da sua ocorrência no documento através do parâmetro Social Slider. Este método foi criado tendo por base um modelo de predição que sugere que, quando se utiliza a similaridade dos cossenos, documentos que partilham tags ficam mais próximos enquanto que, no caso de não partilharem, ficam mais distantes. O segundo método deu origem a um algoritmo que denominamos k-C. Este para além de permitir a seleção inicial das sementes através de uma rede de tags também altera a forma como os novos centróides em cada iteração são calculados. A alteração ao cálculo dos centróides teve em consideração uma reflexão sobre a utilização da distância euclidiana e similaridade dos cossenos no algoritmo de clustering k-means. No contexto da avaliação dos algoritmos foram propostos dois algoritmos, o algoritmo da “Ground truth automática” e o algoritmo MCI. O primeiro permite a deteção da estrutura dos dados, caso seja desconhecida, e o segundo é uma medida de avaliação interna baseada na similaridade dos cossenos entre o documento mais próximo de cada documento. A análise de resultados preliminares sugere que a utilização do primeiro método de integração das tags no VSM tem mais impacto no algoritmo k-means do que no algoritmo k-C. Além disso, os resultados obtidos evidenciam que não existe correlação entre a escolha do parâmetro SS e a qualidade dos clusters. Neste sentido, os restantes testes foram conduzidos utilizando apenas o algoritmo k-C (sem integração de tags no VSM), sendo que os resultados obtidos indicam que a utilização deste algoritmo tende a gerar clusters mais eficazes.
Resumo:
The paper describes the use of radial basis function neural networks with Gaussian basis functions to classify incomplete feature vectors. The method uses the fact that any marginal distribution of a Gaussian distribution can be determined from the mean vector and covariance matrix of the joint distribution.
Resumo:
The genetic diversity of 15 carob ( Ceratonia siliqua L.) cultivars located in an experimental field from Algarve (Portugal) was evaluated over 7 years using 12 fruit and seed phenotypic characters, in order to characterize carob cultivars. The values of morphological traits obtained by cultiv ar were compared with those from other countries of the Mediterranean basin. Statistically significant differences were found between cultivars for al l characters which were examined, what indicates a high genetic diversity. The relationship among these characters was analyzed by principal component analysis (PCA) resulting in the separation of these cultivars classed in four groups (clusters I–IV) and in four ungrouped cultivars. A three dimension of the model was found to be significant and explained 74.5% of the total variation, in which the first component accounting for 34.6% of the total variation is dominated by fruit characters, while the second component is dominated by seed characters. Cultivars plotted on the left-lower quadrant on the space determined by principal components 1 and 2 are characterized by fruits with high seed yield more appropriated for industrial rentability. The correlation analyses established by cultivar provided a specific understanding about the way how fruit and seed characteristics correlate within each cultivar. This approach can be useful for the development of a breeding programme, aiming to increase the seed yield, seed thickness, individual and total seed weight by fruit, characteristics that are determinant to improve the industrial exploitation of carob.
Resumo:
The presence of circulating cerebral emboli represents an increased risk of stroke. The detection of such emboli is possible with the use of a transcranial Doppler ultrasound (TCD) system.
Resumo:
In order to produce packaging films with a broad spectrum of action on microorganisms, the
effect of two antimicrobial (AM) to be included in the films, carvacrol and GSE were studied
separately on different microorganisms. Carvacrol was more effective against the grampositive
bacteria than against the gram-negative bacterium. GSE was not effective against
yeast. Subsequently, a search for optimal combinations of carvacrol, GSE and the addition of
chitosan (as a third component with film forming properties) was carried out. Response
surface analysis showed several synergetic effects and three optimal AM combinations
(OAMC) were obtained for each microorganism. The experimental validation confirmed that
the optimal solutions found can successfully predict the response for each microorganism.
The optimization of mixtures of the three components, but this time, using the same
concentration for all microorganisms, was also studied to obtain an OAMC with wide spectrum
of activity. The results of the response surface analysis showed several synergistic effects for
all microorganisms. Three OAMC, OAMC-1, OAMC-2, OAMC-3, were found to be the optimal
mixtures for all microorganisms. The radical scavenging activity (RSA) of the different agents
was then compared with a standard antioxidant (AOX) BHT, at different concentrations; as also
at the OAMC. The RSA increased in the following order: chitosan
Automatic classification of scientific records using the German Subject Heading Authority File (SWD)
Resumo:
The following paper deals with an automatic text classification method which does not require training documents. For this method the German Subject Heading Authority File (SWD), provided by the linked data service of the German National Library is used. Recently the SWD was enriched with notations of the Dewey Decimal Classification (DDC). In consequence it became possible to utilize the subject headings as textual representations for the notations of the DDC. Basically, we we derive the classification of a text from the classification of the words in the text given by the thesaurus. The method was tested by classifying 3826 OAI-Records from 7 different repositories. Mean reciprocal rank and recall were chosen as evaluation measure. Direct comparison to a machine learning method has shown that this method is definitely competitive. Thus we can conclude that the enriched version of the SWD provides high quality information with a broad coverage for classification of German scientific articles.
Resumo:
Thesis (Ph.D.)--University of Washington, 2013
Resumo:
Low noise surfaces have been increasingly considered as a viable and cost-effective alternative to acoustical barriers. However, road planners and administrators frequently lack information on the correlation between the type of road surface and the resulting noise emission profile. To address this problem, a method to identify and classify different types of road pavements was developed, whereby near field road noise is analyzed using statistical learning methods. The vehicle rolling sound signal near the tires and close to the road surface was acquired by two microphones in a special arrangement which implements the Close-Proximity method. A set of features, characterizing the properties of the road pavement, was extracted from the corresponding sound profiles. A feature selection method was used to automatically select those that are most relevant in predicting the type of pavement, while reducing the computational cost. A set of different types of road pavement segments were tested and the performance of the classifier was evaluated. Results of pavement classification performed during a road journey are presented on a map, together with geographical data. This procedure leads to a considerable improvement in the quality of road pavement noise data, thereby increasing the accuracy of road traffic noise prediction models.
Resumo:
This paper describes a methodology that was developed for the classification of Medium Voltage (MV) electricity customers. Starting from a sample of data bases, resulting from a monitoring campaign, Data Mining (DM) techniques are used in order to discover a set of a MV consumer typical load profile and, therefore, to extract knowledge regarding to the electric energy consumption patterns. In first stage, it was applied several hierarchical clustering algorithms and compared the clustering performance among them using adequacy measures. In second stage, a classification model was developed in order to allow classifying new consumers in one of the obtained clusters that had resulted from the previously process. Finally, the interpretation of the discovered knowledge are presented and discussed.
Resumo:
The growing importance and influence of new resources connected to the power systems has caused many changes in their operation. Environmental policies and several well know advantages have been made renewable based energy resources largely disseminated. These resources, including Distributed Generation (DG), are being connected to lower voltage levels where Demand Response (DR) must be considered too. These changes increase the complexity of the system operation due to both new operational constraints and amounts of data to be processed. Virtual Power Players (VPP) are entities able to manage these resources. Addressing these issues, this paper proposes a methodology to support VPP actions when these act as a Curtailment Service Provider (CSP) that provides DR capacity to a DR program declared by the Independent System Operator (ISO) or by the VPP itself. The amount of DR capacity that the CSP can assure is determined using data mining techniques applied to a database which is obtained for a large set of operation scenarios. The paper includes a case study based on 27,000 scenarios considering a diversity of distributed resources in a 33 bus distribution network.
Resumo:
Although it is always weak between RFID Tag and Terminal in focus of the security, there are no security skills in RFID Tag. Recently there are a lot of studying in order to protect it, but because it has some physical limitation of RFID, that is it should be low electric power and high speed, it is impossible to protect with the skills. At present, the methods of RFID security are using a security server, a security policy and security. One of them the most famous skill is the security module, then they has an authentication skill and an encryption skill. In this paper, we designed and implemented after modification original SEED into 8 Round and 64 bits for Tag.
Resumo:
The effect of peel and seed removal, two commonly practiced procedures either at home or by the processing industry, on the physicochemical properties, bioactive compounds contents and antioxidant capacity of tomato fruits of four typical Portuguese cultivars (cereja, chucha, rama and redondo) were appraised. Both procedures caused significant nutritional and antioxidant activity losses in fruits of every cultivar. In general, peeling was more detrimental, since it caused a higher decrease in lycopene, bcarotene, ascorbic acid and phenolics contents (averages of 71%, 50%, 14%, and 32%, respectively) and significantly lowered the antioxidant capacity of the fruits (8% and 10%, using DPPH. and b-carotene linoleate model assays, correspondingly). Although seeds removal favored the increase of both color and sweetness, some bioactive compounds (11% of carotenoids and 24% of phenolics) as well as antioxidant capacity (5%) were loss. The studied cultivars were differently influenced by these procedures. The fruits most affected by peeling were those from redondo cultivar (-66% lycopene, -44% b-carotene, -26% ascorbic acid and -38% phenolics). Seeds removal, in turn, was more injurious for cereja tomatoes (-10% lycopene, -38% b-carotene, -25% ascorbic acid and -63% phenolics). Comparatively with the remaining ones, the rama fruits were less affected by the trimming procedures.