967 resultados para Scour at bridges.
Resumo:
The axle forces applied by a vehicle through its wheels are a critical part of the interaction between vehicles, pavements and bridges. Therefore, the minimisation of these forces is important in order to promote long pavement life spans and ensure that bridge loads are small. Moreover, as the road surface roughness affects the vehicle dynamic forces, the monitoring of pavements for highways and bridges is an important task. This paper presents a novel algorithm to identify these dynamic interaction forces which involves direct instrumentation of a vehicle with accelerometers. The ability of this approach to predict the pavement roughness is also presented. Moving force identification theory is applied to a vehicle model in theoretical simulations in order to obtain the interaction forces and pavement roughness from the measured accelerations. The method is tested for a range of bridge spans in simulations and the influence of road roughness level on the accuracy of the results is investigated. Finally, the challenge for the real-world problem is addressed in a laboratory experiment.
Resumo:
Many of the bridges currently in use worldwide are approaching the end of their design lives. However, rehabilitating and extending the lives of these structures raises important safety issues. There is also a need for increased monitoring which has considerable cost implications for bridge management systems. Existing structural health monitoring (SHM) techniques include vibration-based approaches which typically involve direct instrumentation of the bridge and are important as they can indicate the deterioration of the bridge condition. However, they can be labour intensive and expensive. In the past decade, alternative indirect vibration-based approaches which utilise the response of a vehicle passing over a bridge have been developed. This paper investigates such an approach; a low-cost approach for the monitoring of bridge structures which consists of the use of a vehicle fitted with accelerometers on its axles. The approach aims to detect damage in the bridge while obviating the need for direct instrumentation of the bridge. Here, the effectiveness of the approach in detecting damage in a bridge is investigated using a simplified vehicle-bridge interaction (VBI) model in theoretical simulations and a scaled VBI model in a laboratory experiment. In order to identify the existence and location of damage, the vehicle accelerations are recorded and processed using a continuous Morlet wavelet transform and a damage index is established. A parametric study is carried out to investigate the effect of parameters such as the bridge span length, vehicle speed, vehicle mass, damage level and road surface roughness on the accuracy of results.
Resumo:
A full understanding of the hydrodynamic processes within the jet produced by a manoeuvring ship’s propeller is essential in the development and maintenance of ports, docks and harbours. In this study the predominant axial velocity component of a diffusing propeller jet was studied. The flow fields formed by four propellers, each operating at four power levels (speeds of rotation), were investigated under bollard pull conditions within a large free surface tank using Laser Doppler Anemometry. Comparison were made to existing methodologies by which a prediction of the magnitudes of the axial velocity can be made, and where deficient modifications to the methodologies have been developed. The jets were found to produce a maximum axial velocity along the initial efflux plane at a location near the blade mid-span. The position and magnitude of the axial velocity was seen to decrease as the jet entrained more flow and transitioned from the zone of flow establishment into the zone of established flow.
Resumo:
Tanpura string vibrations have been investigated previously using numerical models based on energy conserving schemes derived from a Hamiltonian description in one-dimensional form. Such time-domain models have the property that, for the lossless case, the numerical Hamiltonian (representing total energy of the system) can be proven to be constant from one time step
to the next, irrespective of any of the system parameters; in practice the Hamiltonian can be shown to be conserved within machine precision. Models of this kind can reproduce a jvari effect, which results from the bridge-string interaction. However the one-dimensional formulation has recently been shown to fail to replicate the jvaris strong dependence on the thread placement. As a first step towards simulations which accurately emulate this sensitivity to the thread placement, a twodimensional model is proposed, incorporating coupling of controllable level between the two string polarisations at the string termination opposite from the barrier. In addition, a friction force acting when the string slides across the bridge in horizontal direction is introduced, thus effecting a further damping mechanism. In this preliminary study, the string is terminated at the position of the thread. As in the one-dimensional model, an implicit scheme has to be used to solve the system, employing Newton's method to calculate the updated positions and momentums of each string segment. The two-dimensional model is proven to be energy conserving when the loss parameters are set to zero, irrespective of the coupling constant. Both frequency-dependent and independent losses are then added to the string, so that the model can be compared to analogous instruments. The influence of coupling and the bridge friction are investigated.
Resumo:
There have been over 3000 bridge weigh-in-motion (B-WIM) installations in 25 countries worldwide, this has led vast improvements in post processing of B-WIM systems since its introduction in the 1970’s. Existing systems are based on electrical resistance strain gauges which can be prohibitive in achieving data for long term monitoring of rural bridges due to power consumption. This paper introduces a new low-power B-WIM system using fibre optic sensors (FOS). The system consisted of a series of FOS which were attached to the soffit of an existing integral bridge with a single span of 19m. The site selection criteria and full installation process has been detailed in the paper. A method of calibration was adopted using live traffic at the bridge site and based on this calibration the accuracy of the system was determined. New methods of axle detection for B-WIM were investigated and verified in the field.
Resumo:
Bridge Weigh in Motion (B-WIM) uses accurate sensing systems to transform an existing bridge into a mechanism to determine actual traffic loading. This information on traffic loading can enable efficient and economical management of transport networks and is becoming a valuable tool for bridge safety assessment. B-WIM can provide site specific traffic loading on deteriorating bridges, which can be used to determine if the reduced capacity is still sufficient to allow the structure to remain operational and minimise unnecessary replacement or rehabilitation costs and prevent disruption to traffic. There have been numerous reports on the accuracy classifications of existing B-WIM installations and some common issues have emerged. This paper details some of the recent developments in B-WIM which were aimed at overcoming these issues. A new system has been developed at Queens University Belfast using fibre optic sensors to provide accurate axle detection and improved accuracy overall. The results presented in this paper show that the fibre optic system provided much more accurate results than conventional WIM systems, as the FOS provide clearer signals at high scanning rates which require less filtering and less post processing. A major disadvantage of existing B-WIM systems is the inability to deal with more than one vehicle on the bridge at the same time; sensor strips have been proposed to overcome this issue. A bridge can be considered safe if the probability that load exceeds resistance is acceptably low, hence B-WIM information from advanced sensors can provide confidence in our ageing structures.
Resumo:
In recent years, Structural Health Monitoring (SHM) systems have been developed to monitor bridge deterioration, assess real load levels and hence extend bridge life and safety. A road bridge is only safe if the stresses caused by the passing vehicles are less than the capacity of the bridge to resist them. Conventional SHM systems can be used to improve knowledge of the bridges capacity to resist stresses but generally give no information on the causes of any increase in stresses (based on measuring strain). The concept of in Bridge Weigh-in-Motion (B-WIM) is to establish axle loads, without interruption to traffic flow, by using strain sensors at a bridge soffit and subsequently converting the data to real time axle loads or stresses. Recent studies have shown it would be most beneficial to develop a portable system which can be easily attached to existing and new bridge structures for a specified monitoring period. The sensors could then be left in place while the data acquisition can be moved for various other sites. Therefore it is necessary to find accurate sensors capable of capturing peak strains under dynamic load and suitable methods for attaching these strain sensors to existing and new bridge structures. Additionally, it is important to ensure accurate strain transfer between concrete and steel, the adhesives layer and the strain sensor. This paper describes research investigating the suitably of using various sensors for the monitoring of concrete structures under dynamic vehicle load. Electrical resistance strain (ERS) gauges, vibrating wire (VW) gauges and fibre optic sensors (FOS) are commonly used for SHM. A comparative study will be carried out to select a suitable sensor for a bridge Weigh in Motion System. This study will look at fixing methods, durability, scanning rate and accuracy range. Finite element modeling is used to predict the strains which are then validated in laboratory trials.
Resumo:
Masonry arch bridges are one of the oldest forms of bridge construction and have been around for thousands of years. Brick and stone arch bridges have proven to be highly durable as most of them have remained serviceable after hundreds of years. In contrast, many bridges built of modern materials have required extensive repair and strengthening after being in service for a relatively short part of their design life. This paper describes the structural monitoring of a novel flexible concrete arch known as: FlexiArchTM. This is a bridge system that can be transported as a flat-pack system to form an arch in-situ by the use of a flexible polymeric membrane. The system has been developed under a Knowledge Transfer Partnership between Queen’s University Belfast (QUB) and Macrete Ltd. Tievenameena Bridge in Northern Ireland was a replacement bridge for the Northern Ireland Roads Service and was monitored under different axle loadings using a range of sensors including discrete fiber optic Bragg gratings to measure the change in strain in the arch ring under live loading. This paper discusses the results of a laboratory model study carried out at QUB. A scaled arch system was loaded with a simulated moving axle. Various techniques were used to monitor the arch under the moving axle load with particular emphasis on the interaction of the arch ring and engineered backfill.
Resumo:
Bridge weigh-in-motion (B-WIM), a system that uses strain sensors to calculate the weights of trucks passing on bridges overhead, requires accurate axle location and speed information for effective performance. The success of a B-WIM system is dependent upon the accuracy of the axle detection method. It is widely recognised that any form of axle detector on the road surface is not ideal for B-WIM applications as it can cause disruption to the traffic (Ojio & Yamada 2002; Zhao et al. 2005; Chatterjee et al. 2006). Sensors under the bridge, that is Nothing-on-Road (NOR) B-WIM, can perform axle detection via data acquisition systems which can detect a peak in strain as the axle passes. The method is often successful, although not all bridges are suitable for NOR B-WIM due to limitations of the system. Significant research has been carried out to further develop the method and the NOR algorithms, but beam-and-slab bridges with deep beams still present a challenge. With these bridges, the slabs are used for axle detection, but peaks in the slab strains are sensitive to the transverse position of wheels on the beam. This next generation B-WIM research project extends the current B-WIM algorithm to the problem of axle detection and safety, thus overcoming the existing limitations in current state-of–the-art technology. Finite Element Analysis was used to determine the critical locations for axle detecting sensors and the findings were then tested in the field. In this paper, alternative strategies for axle detection were determined using Finite Element analysis and the findings were then tested in the field. The site selected for testing was in Loughbrickland, Northern Ireland, along the A1 corridor connecting the two cities of Belfast and Dublin. The structure is on a central route through the island of Ireland and has a high traffic volume which made it an optimum location for the study. Another huge benefit of the chosen location was its close proximity to a nearby self-operated weigh station. To determine the accuracy of the proposed B-WIM system and develop a knowledge base of the traffic load on the structure, a pavement WIM system was also installed on the northbound lane on the approach to the structure. The bridge structure selected for this B-WIM research comprised of 27 pre-cast prestressed concrete Y4-beams, and a cast in-situ concrete deck. The structure, a newly constructed integral bridge, spans 19 m and has an angle of skew of 22.7°.
Resumo:
Background The diagnosis of gestational diabetes (GDM) during pregnancy can lead to anxiety. Little research has focused on the education these women receive and how this is best delivered in a busy clinic. Aim This study evaluated the impact of an innovative patient-centred educational DVD on anxiety and glycaemic control and in newly diagnosed women with GDM. Method 150 multi-ethnic women, aged 19-44 years, from three UK hospitals were randomised to either standard care plus DVD (DVD group, n=77) or standard care alone (control group, n=73) at GDM diagnosis. Women were followed up at their next clinic visit at a mean ± SD of 2.5 ± 1.6 weeks later. Primary outcomes were anxiety (State-Trait Anxiety Inventory) and mean 1-hour postprandial capillary self-monitored blood glucose for all meals, on day prior to follow-up. Secondary outcomes included pregnancy specific stress (Pregnancy Distress Questionnaire), emotional adjustment to diabetes (Appraisal of Diabetes Scale), self-efficacy (Diabetes Empowerment Scale) and GDM knowledge (non-validated questionnaire). Other outcomes included mean fasting and 1-hour postprandial blood glucose at each meal, on day prior to follow-up. Women in the DVD group completed a feedback questionnaire on the resource. Results No significant difference between the DVD and control group were reported, for anxiety (37.7 ± 11.7 vs 36.2 ± 10.9; mean difference after adjustment for covariates (95%CI) 2.5 (-0.8, 5.9) or for mean 1-hour postprandial glucose (6.9 ± 0.9 vs 7.0 ± 1.2 mmol/L; -0.2 (-0.5, 0.2). Similarly, no significant differences in the other psychosocial variables were identified between the groups. However, the DVD group had significantly lower postprandial breakfast glucose compared to the control group (6.8 ± 1.2 vs 7.4 ± 1.9 mmol/L; -0.5 (-1.1, -<0.1; p=0.04). Using a scale of 0-10, 84% rated the DVD 7 or above for usefulness (10 being very useful), and 88% rated it 7 or above when asked if they would recommend to a friend (10 being very strongly recommend). Women described the DVD as ‘reassuring’, ‘a fantastic tool’, that ‘provided a lot of information in a quick and easy way’ and ‘helped reinforce all the information from clinic’. Discussion While no significant change was observed in anxiety or mean postprandial glucose, the DVD was rated highly by women with GDM and may be a useful resource to assist with educating newly diagnosed women. This project is supported by BRIDGES, an IDF programme supported by an educational grant from Lilly Diabetes.
Resumo:
In his essay, Anti-Object, Kengo Kuma proposes that architecture cannot and should not be understood as object alone but instead always as series of networks and connections, relationships within space and through form. Some of these relationships are tangible, others are invisible. Stan Allen and James Corner have also called for an architecture that is more performative and operative – ‘less concerned with what buildings look like and more concerned with what they do’ – as means of effecting a more intimate and promiscuous relationship between infrastructure, urbanism and buildings. According to Allen this expanding filed offers a reclamation of some of the areas ceded by architecture following disciplinary specialization:
‘Territory, communication and speed are properly infrastructural problems and architecture as a discipline has developed specific technical means to deal with these variables. Mapping, projection, calculation, notation and visualization are among architecture’s traditional tools for operating at the very large scale’.
The motorway may not look like it – partly because we are no longer accustomed to think about it as such – but it is a site for and of architecture, a territory where architecture can be critical and active. If the limits of the discipline have narrowed, then one of the functions of a school of architecture must be an attempt occupy those areas of the built environment where architecture is no longer, or has yet to reach. If this is a project about reclamation of a landscape, it is also a challenge to some of the boundaries that surround architecture and often confine it, as Kuma suggests, to the appreciation of isolated objects.
M:NI 2014-15
We tend to think of the motorway as a thing or an object, something that has a singular function. Historically this is how it has been seen, with engineers designing bridges and embankments and suchlike with zeal … These objects like the M3 Urban Motorway, Belfast’s own Westway, are beautiful of course, but they have caused considerable damage to the city they were inflicted upon.
Actually, it’s the fact that we have seen the motorway as a solid object that has caused this problem. The motorway actually is a fluid and dynamic thing, and it should be seen as such: in fact it’s not an organ at all but actually tissue – something that connects rather than is. Once we start to see the motorway as tissue, it opens up new propositions about what the motorway is, is used for and does. This new dynamic and connective view unlocks the stasis of the motorway as edifice, and allows adaptation to happen: adaptation to old contexts that were ignored by the planners, and adaptation to new contexts that have arisen because of or in spite of our best efforts.
Motorways as tissue are more than just infrastructures: they are landscapes. These landscapes can be seen as surfaces on which flows take place, not only of cars, buses and lorries, but also of the globalized goods carried and the lifestyles and mobilities enabled. Here the infinite speed of urban change of thought transcends the declared speed limit [70 mph] of the motorway, in that a consignment of bananas can cause soil erosion in Equador, or the delivery of a new iphone can unlock connections and ideas the world over.
So what is this new landscape to be like? It may be a parallax-shifting, cognitive looking glass; a drone scape of energy transformation; a collective farm, or maybe part of a hospital. But what’s for sure, is that it is never fixed nor static: it pulses like a heartbeat through that most bland of landscapes, the countryside. It transmits forces like a Caribbean hurricane creating surf on an Atlantic Storm Beach: alien forces that mutate and re-form these places screaming into new, unclear and unintended futures.
And this future is clear: the future is urban. In this small rural country, motorways as tissue have made the whole of it: countryside, mountain, sea and town, into one singular, homogenous and hyper-connected, generic city.
Goodbye, place. Hello, surface!
Resumo:
In his essay, Anti-Object, Kengo Kuma proposes that architecture cannot and should not be understood as object alone but instead always as series of networks and connections, relationships within space and through form. Some of these relationships are tangible, others are invisible. Stan Allen and James Corner have also called for an architecture that is more performative and operative – ‘less concerned with what buildings look like and more concerned with what they do’ – as means of effecting a more intimate and promiscuous relationship between infrastructure, urbanism and buildings. According to Allen this expanding filed offers a reclamation of some of the areas ceded by architecture following disciplinary specialization:
‘Territory, communication and speed are properly infrastructural problems and architecture as a discipline has developed specific technical means to deal with these variables. Mapping, projection, calculation, notation and visualization are among architecture’s traditional tools for operating at the very large scale’.
The motorway may not look like it – partly because we are no longer accustomed to think about it as such – but it is a site for and of architecture, a territory where architecture can be critical and active. If the limits of the discipline have narrowed, then one of the functions of a school of architecture must be an attempt occupy those areas of the built environment where architecture is no longer, or has yet to reach. If this is a project about reclamation of a landscape, it is also a challenge to some of the boundaries that surround architecture and often confine it, as Kuma suggests, to the appreciation of isolated objects.
M:NI 2014-15
We tend to think of the motorway as a thing or an object, something that has a singular function. Historically this is how it has been seen, with engineers designing bridges and embankments and suchlike with zeal … These objects like the M3 Urban Motorway, Belfast’s own Westway, are beautiful of course, but they have caused considerable damage to the city they were inflicted upon.
Actually, it’s the fact that we have seen the motorway as a solid object that has caused this problem. The motorway actually is a fluid and dynamic thing, and it should be seen as such: in fact it’s not an organ at all but actually tissue – something that connects rather than is. Once we start to see the motorway as tissue, it opens up new propositions about what the motorway is, is used for and does. This new dynamic and connective view unlocks the stasis of the motorway as edifice, and allows adaptation to happen: adaptation to old contexts that were ignored by the planners, and adaptation to new contexts that have arisen because of or in spite of our best efforts.
Motorways as tissue are more than just infrastructures: they are landscapes. These landscapes can be seen as surfaces on which flows take place, not only of cars, buses and lorries, but also of the globalized goods carried and the lifestyles and mobilities enabled. Here the infinite speed of urban change of thought transcends the declared speed limit [70 mph] of the motorway, in that a consignment of bananas can cause soil erosion in Equador, or the delivery of a new iphone can unlock connections and ideas the world over.
So what is this new landscape to be like? It may be a parallax-shifting, cognitive looking glass; a drone scape of energy transformation; a collective farm, or maybe part of a hospital. But what’s for sure, is that it is never fixed nor static: it pulses like a heartbeat through that most bland of landscapes, the countryside. It transmits forces like a Caribbean hurricane creating surf on an Atlantic Storm Beach: alien forces that mutate and re-form these places screaming into new, unclear and unintended futures.
And this future is clear: the future is urban. In this small rural country, motorways as tissue have made the whole of it: countryside, mountain, sea and town, into one singular, homogenous and hyper-connected, generic city.
Goodbye, place. Hello, surface!
Resumo:
Introduction: Human alpha defensins are a family of neutrophil-derived antimicrobial peptides also known as human neutrophil peptides (HNPs). The defensin family of peptides are characterised by six invariant cysteine residues forming three disulphide bridges. The formation of the correct disulphide pairs complicates the synthesis of full length human alpha defensin and limits its therapeutic potential as an antimicrobial peptide. Objectives: The aim of this study was to determine whether truncated alpha defensins displayed antimicrobial activity against a range of micro-organisms including oral pathogens. Methods: Engineered peptides were synthesised by solid-phase methods using standard Fmoc chemistry. Antibacterial assays were performed using a previously described ultra sensitive radial diffusion method. A total of five engineered defensin peptides and full length alpha defensin were tested for their sensitivity against eight micro-organisms, including Gram negative bacteria, Gram positive bacteria and fungal pathogens Results: Antimicrobial activity was identified as clear zones around peptide-containing wells. Zone diameters were used to calculate minimum inhibitory concentrations (MICs) for each peptide. There was considerable variability in the susceptibility of the micro-organisms to the truncated analogues. Bacillus subtilis and Enterococcus faecalis were sensitive to the majority of the engineered peptides whereas Staphylococcus aureus, Escherichia coli and Candida albicans displayed resistance (defined as an MIC of greater than 250 ug/ml) to the truncated defensins. Of the five engineered peptides synthesised, the 2-aminobenzoic acid (Abz)-containing analogues based on the C-terminal sequence of alpha defensin displayed MIC values closest to that of the full length defensin in 5 out of 8 micro-organisms studied. Conclusion: This study demonstrates that truncated alpha defensins display variable antimicrobial activity against a range of micro-organisms, including oral pathogens. The generation of truncated defensins without disulphide bridges simplifies their synthesis and increases their therapeutic potential.
Resumo:
Experience continuously imprints on the brain at all stages of life. The traces it leaves behind can produce perceptual learning [1], which drives adaptive behavior to previously encountered stimuli. Recently, it has been shown that even random noise, a type of sound devoid of acoustic structure, can trigger fast and robust perceptual learning after repeated exposure [2]. Here, by combining psychophysics, electroencephalography (EEG), and modeling, we show that the perceptual learning of noise is associated with evoked potentials, without any salient physical discontinuity or obvious acoustic landmark in the sound. Rather, the potentials appeared whenever a memory trace was observed behaviorally. Such memory-evoked potentials were characterized by early latencies and auditory topographies, consistent with a sensory origin. Furthermore, they were generated even on conditions of diverted attention. The EEG waveforms could be modeled as standard evoked responses to auditory events (N1-P2) [3], triggered by idiosyncratic perceptual features acquired through learning. Thus, we argue that the learning of noise is accompanied by the rapid formation of sharp neural selectivity to arbitrary and complex acoustic patterns, within sensory regions. Such a mechanism bridges the gap between the short-term and longer-term plasticity observed in the learning of noise [2, 4-6]. It could also be key to the processing of natural sounds within auditory cortices [7], suggesting that the neural code for sound source identification will be shaped by experience as well as by acoustics.
Resumo:
A formação do estudante de enfermagem em ensino clínico reveste-se de uma importância singular pelo contacto e vivência de situações em contexto, por lhe proporcionar a aquisição, o desenvolvimento e a consolidação de conhecimentos e competências em vários domínios, assim como de socialização com a profissão. O primeiro ensino clínico pelas actividades em contexto com os profissionais de saúde e os utentes é um período de transição particularmente marcante em termos formativos. Nele frequentemente acontece a ruptura nas suas concepções de formação e de aprendizagem, tornando-se num momento de confronto com uma formação que prepara para a incerteza e imprevisibilidade. Nesta investigação pretendemos compreender o que acontece neste período de aprendizagem, partindo da seguinte questão central de investigação: Que significado tem o primeiro ensino clínico no percurso formativo do estudante de enfermagem? O estudo desta questão exigiu o recurso a uma metodologia de natureza qualitativa baseada na estratégia estudo de caso na sua vertente multicasos. Seleccionámos três casos de estudo respectivamente do 1º, do 2º e 3º anos do Curso de Licenciatura em Enfermagem de três planos de estudos de Escolas Superiores de Enfermagem. O caso é constituído por um grupo de estudantes no primeiro ensino clínico hospitalar, enfermeiros e docentes que os orientam. Desenvolvemos uma etnometodologia em que privilegiámos a observação no terreno com participação directa do investigador, recolha documental, entrevistas etnográficas e semi-estruturadas aos vários intervenientes. A análise da informação reunida processou-se pela análise de conteúdo dos dados obtidos num percurso recursivo entre as várias fontes com apoio do programa informático Nvivo 7. Concluímos que o primeiro ensino clínico: é um período de formação estruturante, com forte impacto pela transição que se opera na postura do estudante perante a aprendizagem, pelas propriedades (trans)formativas que as vivências em contexto encerram, independentemente do ano do Curso em que este acontece; a preparação prévia dos estudantes modeliza os domínios da aprendizagem e a profundidade em que ocorre; aprendem de um modo fragmentado sem conseguirem integrar os vários domínios do conhecimento na acção; os estudantes do 1º ano dão mais significado à destreza e rapidez na realização de intervenções prescritas e à aplicação dos princípios teóricos aprendidos; a orientação dos enfermeiros, tutores e docentes é fundamental na mobilização, para a acção, dos conhecimentos teóricos ou na sua aquisição; a vivência das situações em contexto e o ambiente relacional estão entre os factores mais influentes; a prática orientada com atenção individualizada, questionamento, análise e reflexão em díade supervisor-aluno, são fundamentais no desenvolvimento do pensamento crítico; ser supervisor deve ser assumido pelo docente e pelo enfermeiro ou tutor como um trabalho de articulação e proximidade com e no contexto onde o ensino clínico decorre; a resposta adequada às funções específicas de supervisão exige participação activa de equipas de enfermagem mais preparadas e hierarquicamente apoiadas; o docente pelo conhecimento dos estudantes, dos fins e objectivos da formação, pelos desafios e exigência que coloca tem um papel insubstituível. No percurso da investigação novas questões emergiram nomeadamente no que se prende com: os modelos de articulação entre instituições de saúde e escolares; com a formação dos supervisores e; o papel dos pares no início da aprendizagem dos estudantes em contexto clínico.