983 resultados para Scolex Gland-cells
Resumo:
O presente estudo reporta o caso de uma mulher de 63 anos da qual a única informação clínica era a suspeita de um sarcoma da cérvix. Simultaneamente à colpocitologia, foram enviadas biópsias do colo e do endométrio para diagnóstico. A visualização da amostra citológica revelou vários agregados de número variável de células monótonas, com tamanho pequeno, formato redondo e citoplasma escasso, num fundo com diátese. Os núcleos apresentavam moldagem, hipercromasia, cromatina “sal-e-pimenta” e ausência de nucléolos. O aspeto microscópico das biópsias foi concordante com os achados citológicos, tendo sido igualmente identificados focos glanduliformes com características atípicas. A neoplasia mostrou expressão imunohistoquímica dos antigénios enolase neurónio-específica (neuron specific enolase, NSE), sinaptofisina e citoqueratina (clones AE1/AE3), e uma elevada atividade proliferativa demonstrada pela imunorreactividade para o marcador nuclear Ki67/Mib1. Os achados citológicos, histológicos e imunohistoquímicos foram consistentes com o diagnóstico de carcinoma neuroendócrino de pequenas células. Dos tumores cervicais, esta neoplasia maligna é das mais raras, mostrando um comportamento muito agressivo, com prognóstico muito pobre, em que as terapêuticas existentes são pouco consensuais quanto à sua eficácia. A sua etiologia ainda é estudada, podendo estar relacionada com a infeção pelo Vírus do Papiloma Humano.
Resumo:
Diethyldithiocarbamate (ditiocarb), a metabolite of the old anti-alcoholic drug disulfiram (Antabuse), forms proteasome-inhibiting metal complexes with copper or zinc that suppress cancer cells both in vitro and in vivo. The drug has been used in a clinical trial (NCT00742911) along with copper gluconate as a dietary supplement in patients with cancer spreading to the liver. In this study, we demonstrate the effect of synthetic complexes of disulfiram with four various metals (Mn, Fe, Cr and Cu) used as food supplements. These complexes may be spontaneously formed in the blood during the use of disulfiram with divalent metals and thus may suppress the growth of cancer in vivo. The cytotoxic effect of the compounds and the compounds' ability to inhibit the cellular proteasome were tested in the osteosarcoma cell line U2OS. After 48 h, copper and manganese complexes exhibited cytotoxic effect on the cell line, in sharp contrast to both iron and chromium complexes. (C) 2014 Faculty of Health and Social Studies, University of South Bohemia in Ceske Budejovice. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.
Resumo:
A new family of "Fe-II(eta(5)-C5H5)" half sandwich compounds bearing a N-heteroaromatic ligand coordinated to the iron center by a nitrile functional group has been synthesized and fully characterized by NMR and UV-Vis spectroscopy. X-ray analysis of single crystal was achieved for complexes 1 and 3, which crystallized in the monoclinic P2(1)/c and monoclinic P2(1)/n space groups, respectively. Studies of interaction of these five new complexes with plasmid pBR322 DNA by atomic force microscopy showed very strong and different types of interaction. Antiproliferative tests were examined on human leukemia cancer cells (HL-60) using the MTT assay, and the IC50 values revealed excellent antiproliferative activity compared to cisplatin. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
We consider a dynamical model of cancer growth including three interacting cell populations of tumor cells, healthy host cells and immune effector cells. For certain parameter choice, the dynamical system displays chaotic motion and by decreasing the response of the immune system to the tumor cells, a boundary crisis leading to transient chaotic dynamics is observed. This means that the system behaves chaotically for a finite amount of time until the unavoidable extinction of the healthy and immune cell populations occurs. Our main goal here is to apply a control method to avoid extinction. For that purpose, we apply the partial control method, which aims to control transient chaotic dynamics in the presence of external disturbances. As a result, we have succeeded to avoid the uncontrolled growth of tumor cells and the extinction of healthy tissue. The possibility of using this method compared to the frequently used therapies is discussed. (C) 2014 Elsevier Ltd. All rights reserved.
Resumo:
Calf serum and fetal bovine serum present great variability as to its growth promoting efficiency (GPE). As supplement of culture media to cultivate cells of animal origin they stimulate the "in vitro" multiplication and maintain cell viability. When fourteen lots of calf sera of variable GPE had the total protein contents as well as the percentages of serum fractions determined, no significant differences that could possibly explain the variability of the GPE were observed. Evaluation of the antiproteolytic activity of nineteen lots of calf serum and eighteen serum lots of younger calves showed that the former exhibited lower antiproteolytic titers (1:40 to 1:80) than the latter (1:80 to 1:160). Twelve lots of fetal bovine serum studied in parallel, showed the highest concentration of antiproteolytic factors, with titers equal to 1:320. Sera of bovine origin, but not fetal sera, are usually heat-inactivated, what was demonstrated to be responsible for the decrease of the antiproteolytic activity of 75% of the lots tested. This could explain the inability of certain heat-inactivated sera in promoting multiplication of some cells "in vitro", as verified with primary monkey kidney cells. The results obtained in this study indicated the convenience of submiting each lot of serum to be introduced in cell culture to previous determination of its characteristics, such as growth promoting efficiency, antiproteolytic activity and also toxicity, absence of extraneous agents, etc., in order to minimize the possibility of using serum lots of questionable quality, thus preventing not only the loss of cell lines, but also undesirable and sometimes expensive delays.
Resumo:
Human exposure to Bisphenol A (BPA) results mainly from ingestion of food and beverages. Information regarding BPA effects on colon cancer, one of the major causes of death in developed countries, is still scarce. Likewise, little is known about BPA drug interactions although its potential role in doxorubicin (DOX) chemoresistance has been suggested. This study aims to assess potential interactions between BPA and DOX on HT29 colon cancer cells. HT29 cell response was evaluated after exposure to BPA, DOX, or co-exposure to both chemicals. Transcriptional analysis of several cancer-associated genes (c-fos, AURKA, p21, bcl-xl and CLU) shows that BPA exposure induces slight up-regulation exclusively of bcl-xl without affecting cell viability. On the other hand, a sub-therapeutic DOX concentration (40nM) results in highly altered c-fos, bcl-xl, and CLU transcript levels, and this is not affected by co-exposure with BPA. Conversely, DOX at a therapeutic concentration (4μM) results in distinct and very severe transcriptional alterations of c-fos, AURKA, p21 and CLU that are counteracted by co-exposure with BPA resulting in transcript levels similar to those of control. Co-exposure with BPA slightly decreases apoptosis in relation to DOX 4μM alone without affecting DOX-induced loss of cell viability. These results suggest that BPA exposure can influence chemotherapy outcomes and therefore emphasize the necessity of a better understanding of BPA interactions with chemotherapeutic agents in the context of risk assessment.
Resumo:
Defective interfering (DI) viruses are thought to cause oscillations in virus levels, known as the ‘Von Magnus effect’. Interference by DI viruses has been proposed to underlie these dynamics, although experimental tests of this idea have not been forthcoming. For the baculoviruses, insect viruses commonly used for the expression of heterologous proteins in insect cells, the molecular mechanisms underlying DI generation have been investigated. However, the dynamics of baculovirus populations harboring DIs have not been studied in detail. In order to address this issue, we used quantitative real-time PCR to determine the levels of helper and DI viruses during 50 serial passages of Autographa californica multiple nucleopolyhedrovirus (AcMNPV) in Sf21 cells. Unexpectedly, the helper and DI viruses changed levels largely in phase, and oscillations were highly irregular, suggesting the presence of chaos. We therefore developed a simple mathematical model of baculovirus-DI dynamics. This theoretical model reproduced patterns qualitatively similar to the experimental data. Although we cannot exclude that experimental variation (noise) plays an important role in generating the observed patterns, the presence of chaos in the model dynamics was confirmed with the computation of the maximal Lyapunov exponent, and a Ruelle-Takens-Newhouse route to chaos was identified at decreasing production of DI viruses, using mutation as a control parameter. Our results contribute to a better understanding of the dynamics of DI baculoviruses, and suggest that changes in virus levels over passages may exhibit chaos.
Resumo:
Glioma is the most frequent form of malignant brain tumor in the adults and childhood. There is a global tendency toward a higher incidence of gliomas in highly developed and industrialized countries. Simultaneously obesity is reaching epidemic proportions in such developed countries. It has been highly accepted that obesity may play an important role in the biology of several types of cancer. We have developed an in vitro method for the understanding of the influence of obesity on glioma mouse cells (Gl261). 3T3-L1 mouse pre-adipocytes were induced to the maturity. The conditioned medium was harvested and used into the Gl261 cultures. Using two-dimension electrophoresis it was analyzed the proteome content of Gl261 in the presence of conditioned medium (CGl) and in its absence (NCGl). The differently expressed spots were collected and analyzed by means of mass spectroscopy (MALDI-TOF-MS). Significantly expression pattern changes were observed in eleven proteins and enzymes. RFC1, KIF5C, ANXA2, N-RAP, RACK1 and citrate synthase were overexpressed or only present in the CGl. Contrariwise, STI1, hnRNPs and phosphoglycerate kinase 1 were significantly underexpressed in CGl. Aldose reductase and carbonic anhydrase were expressed only in NCGl. Our results show that obesity remodels the physiological and metabolic behavior of glioma cancer cells. Also, proteins found differently expressed are implicated in several signaling pathways that control matrix remodeling, proliferation, progression, migration and invasion. In general our results support the idea that obesity may increase glioma malignancy, however, some interesting paradox finding were also reported and discussed.
Resumo:
Intravenous injection of scorpion toxin (Tityus serrulatus) in normal and Trypanosoma cruzi infected rats did not cause ultrastructural morphologic changes on enterochromaffin-like (ECL) cells of the stomach, although it induced a significant increase of the gastric secretion. Our data seem to indicate that gastric ECL cells structure is not affected by stimulation with scorpion toxin or by acute infection with T. cruzi in the rat.
Resumo:
Ovarian cancer is within the most lethal gynecological malignancies in woman. Therefore, many investigators study its biological aspects with the purpose of discovering more rapid diagnostic methods and efficient treatment. Resembling many other tumors, in ovarian cancer, aberrant glycosylation occurs with the appearance of novel or altered carbohydrate structures. These can be terminal motifs, such as the Lewis determinants, or entire carbohydrate sequences, which have been related to tumorigenesis and its outcome.(...)
Resumo:
TiO2 films have been deposited on ITO substrates by dc reactive magnetron sputtering technique. It has been found that the sputtering pressure is a very important parameter for the structure of the deposited TiO2 films. When the pressure is lower than 1 Pa, the deposited has a dense structure and shows a preferred orientation along the [101] direction. However, the nanorod structure has been obtained as the sputtering pressure is higher than 1 Pa. These nanorods structure TiO2 film shows a preferred orientation along the [110] direction. The x-ray diffraction and the Raman scattering measurements show both the dense and the nanostructure TiO2 films have only an anatase phase, no other phase has been obtained. The results of the SEM show that these TiO2 nanorods are perpendicular to the ITO substrate. The TEM measurement shows that the nanorods have a very rough surface. The dye-sensitized solar cells (DSSCs) have been assembled using these TiO2 nanorod films prepared at different sputtering pressures as photoelectrode. And the effect of the sputtering pressure on the properties of the photoelectric conversion of the DSSCs has been studied.
Resumo:
Abstract Background: Nanotechnology has the potential to provide agriculture with new tools that may be used in the rapid detection and molecular treatment of diseases and enhancement of plant ability to absorb nutrients, among others. Data on nanoparticle toxicity in plants is largely heterogeneous with a diversity of physicochemical parameters reported, which difficult generalizations. Here a cell biology approach was used to evaluate the impact of Quantum Dots (QDs) nanocrystals on plant cells, including their effect on cell growth, cell viability, oxidative stress and ROS accumulation, besides their cytomobility. Results: A plant cell suspension culture of Medicago sativa was settled for the assessment of the impact of the addition of mercaptopropanoic acid coated CdSe/ZnS QDs. Cell growth was significantly reduced when 100 mM of mercaptopropanoic acid -QDs was added during the exponential growth phase, with less than 50% of the cells viable 72 hours after mercaptopropanoic acid -QDs addition. They were up taken by Medicago sativa cells and accumulated in the cytoplasm and nucleus as revealed by optical thin confocal imaging. As part of the cellular response to internalization, Medicago sativa cells were found to increase the production of Reactive Oxygen Species (ROS) in a dose and time dependent manner. Using the fluorescent dye H2DCFDA it was observable that mercaptopropanoic acid-QDs concentrations between 5-180 nM led to a progressive and linear increase of ROS accumulation. Conclusions: Our results showed that the extent of mercaptopropanoic acid coated CdSe/ZnS QDs cytotoxicity in plant cells is dependent upon a number of factors including QDs properties, dose and the environmental conditions of administration and that, for Medicago sativa cells, a safe range of 1-5 nM should not be exceeded for biological applications.
Resumo:
Glucose monitoring in vivo is a crucial issue for gaining new understanding of diabetes. Glucose binding protein (GBP) fused to two fluorescent indicator proteins (FLIP) was used in the present study such as FLIP-glu- 3.2 mM. Recombinant Escherichia coli whole-cells containing genetically encoded nanosensors as well as cell-free extracts were immobilized either on inner epidermis of onion bulb scale or on 96-well microtiter plates in the presence of glutaraldehyde. Glucose monitoring was carried out by Förster Resonance Energy Transfer (FRET) analysis due the cyano and yellow fluorescent proteins (ECFP and EYFP) immobilized in both these supports. The recovery of these immobilized FLIP nanosensors compared with the free whole-cells and cell-free extract was in the range of 50–90%. Moreover, the data revealed that these FLIP nanosensors can be immobilized in such solid supports with retention of their biological activity. Glucose assay was devised by FRET analysis by using these nanosensors in real samples which detected glucose in the linear range of 0–24 mM with a limit of detection of 0.11 mM glucose. On the other hand, storage and operational stability studies revealed that they are very stable and can be re-used several times (i.e. at least 20 times) without any significant loss of FRET signal. To author's knowledge, this is the first report on the use of such immobilization supports for whole-cells and cell-free extract containing FLIP nanosensor for glucose assay. On the other hand, this is a novel and cheap high throughput method for glucose assay.
Resumo:
Among organic pollutants existing in coastal areas, polycyclic aromatic hydrocarbons (PAHs) are of great concern due to their ubiquity and carcinogenic potential. The aim of this study was to evaluate the seasonal patterns of PAHs in the digestive gland and arm of the common octopus (Octopus vulgaris) from the Northwest Atlantic Portuguese coast. In the different seasons, 18 PAHs were determined and the detoxification capacity of the species was evaluated. Ethoxyresorufin O-deethylase (EROD) and ethoxycoumarin O-deethylase (ECOD) activities were measured to assess phase I biotransformation capacity. Individual PAH ratios were used for major source (pyrolytic/petrogenic) analysis. Risks for human consumption were determined by the total toxicity equivalence approach. Generally, low levels of PAHs were detected in the digestive gland and in the arm of octopus, with a predominance of low molecular over high molecular weight compounds. PAHs exhibited seasonality in the concentrations detected and in their main emission sources. In the digestive gland, the highest total PAH levels were observed in autumn possibly related to fat availability in the ecosystem and food intake. The lack of PAH elimination observed in the digestive gland after captivity could be possibly associated to a low biotransformation capacity, consistent with the negligible/undetected levels of EROD and ECOD activity in the different seasons. The emission sources of PAHs found in the digestive gland varied from a petrogenic profile observed in winter to a pyrolytic pattern in spring. In the arm, the highest PAH contents were observed in June; nevertheless, levels were always below the regulatory limits established for food consumption. The carcinogenic potential calculated for all the sampling periods in the arm were markedly lower than the ones found in various aquatic species from different marine environments. The results presented in this study give relevant baseline data for environmental monitoring of organic pollution in coastal areas.
Resumo:
The impact of metals (Cd, Cr, Cu and Zn) on growth, cell volume and cell division of the freshwateralga Pseudokirchneriella subcapitata exposed over a period of 72 h was investigated. The algal cells wereexposed to three nominal concentrations of each metal: low (closed to 72 h-EC10values), intermediate(closed to 72 h-EC50values) and high (upper than 72 h-EC90values). The exposure to low metal concen-trations resulted in a decrease of cell volume. On the contrary, for the highest metal concentrations anincrease of cell volume was observed; this effect was particularly notorious for Cd and less pronouncedfor Zn. Two behaviours were found when algal cells were exposed to intermediate concentrations ofmetals: Cu(II) and Cr(VI) induced a reduction of cell volume, while Cd(II) and Zn(II) provoked an oppositeeffect. The simultaneous nucleus staining and cell image analysis, allowed distinguishing three phases inP. subcapitata cell cycle: growth of mother cell; cell division, which includes two divisions of the nucleus;and, release of four autospores. The exposure of P. subcapitata cells to the highest metal concentrationsresulted in the arrest of cell growth before the first nucleus division [for Cr(VI) and Cu(II)] or after thesecond nucleus division but before the cytokinesis (release of autospores) when exposed to Cd(II). Thedifferent impact of metals on algal cell volume and cell-cycle progression, suggests that different toxic-ity mechanisms underlie the action of different metals studied. The simultaneous nucleus staining andcell image analysis, used in the present work, can be a useful tool in the analysis of the toxicity of thepollutants, in P. subcapitata, and help in the elucidation of their different modes of action.