996 resultados para Scattering (Physics)
Resumo:
HfO2 thin films deposited on Si substrate using electron beam evaporation, are evaluated for back-gated graphene transistors. The amount of O-2 flow rate, during vaporation is optimized for 35 nm thick HfO2 films, to achieve the best optical, chemical and electrical properties. It has been observed that with increasing oxygen flow rate, thickness of the films increased and refractive index decreased due to increase in porosity resulting from the scattering of the evaporant. The films deposited at low O-2 flow rates (1 and 3 SCCM) show better optical and compositional properties. The effects of post-deposition annealing and post-metallization annealing in forming gas ambience (FGA) on the optical and electrical properties of the films have been analyzed. The film deposited at 3 SCCM O-2 flow rate shows the best properties as measured on MOS capacitors. To evaluate the performance of device properties, back-gated bilayer graphene transistors on HfO2 films deposited at two O-2 flow rates of 3 and 20 SCCM have been fabricated and characterized. The transistor with HfO2 film deposited at 3 SCCM O-2 flow rate shows better electrical properties consistent with the observations on MOS capacitor structures. This suggests that an optimum oxygen pressure is necessary to get good quality films for high performance devices.
Resumo:
In this paper we investigate the local flame surface statistics of constant-pressure turbulent expanding flames. First the statistics of local length ratio is experimentally determined from high-speed planar Mie scattering images of spherically expanding flames, with the length ratio on the measurement plane, at predefined equiangular sectors, defined as the ratio of the actual flame length to the length of a circular-arc of radius equal to the average radius of the flame. Assuming isotropic distribution of such flame segments we then convolute suitable forms of the length-ratio probability distribution functions (pdfs) to arrive at the corresponding area-ratio pdfs. It is found that both the length ratio and area ratio pdfs are near log-normally distributed and shows self-similar behavior with increasing radius. Near log-normality and rather intermittent behavior of the flame-length ratio suggests similarity with dissipation rate quantities which stimulates multifractal analysis. (C) 2014 AIP Publishing LLC.
Resumo:
Non-invasive 3D imaging in materials and medical research involves methodologies such as X-ray imaging, MRI, fluorescence and optical coherence tomography, NIR absorption imaging, etc., providing global morphological/density/absorption changes of the hidden components. However, molecular information of such buried materials has been elusive. In this article we demonstrate observation of molecular structural information of materials hidden/buried in depth using Raman scattering. Typically, Raman spectroscopic observations are made at fixed collection angles, such as, 906, 1356, and 1806, except in spatially offset Raman scattering (SORS) (only back scattering based collection of photons) and transmission techniques. Such specific collection angles restrict the observations of Raman signals either from or near the surface of the materials. Universal Multiple Angle Raman Spectroscopy (UMARS) presented here employs the principle of (a) penetration depth of photons and then diffuse propagation through non-absorbing media by multiple scattering and (b) detection of signals from all the observable angles.
Resumo:
The thermoelectric figure of merit (zT) can be increased by introduction of additional interfaces in the bulk to reduce the thermal conductivity. In this work, PbTe with a dispersed indium (In) phase was synthesized by a matrix encapsulation technique for different In concentrations. x-Ray diffraction analysis showed single-phase PbTe with In secondary phase. Rietveld analysis did not show In substitution at either the Pb or Te site, and this was further confirmed by room-temperature Raman data. Low-magnification (similar to 1500x) scanning electron microscopy images showed micrometer-sized In dispersed throughout the PbTe matrix, while at high magnification (150,000x) an agglomeration of PbTe particles in the hot-pressed samples could be seen. The electrical resistivity (rho) and Seebeck coefficient (S) were measured from 300 K to 723 K. Negative Seebeck values showed all the samples to be n-type. A systematic increase in resistivity and higher Seebeck coefficient values with increasing In content indicated the role of PbTe-In interfaces in the scattering of electrons. This was further confirmed by the thermal conductivity (kappa), measured from 423 K to 723 K, where a greater reduction in the electronic as compared with the lattice contribution was found for In-added samples. It was found that, despite the high lattice mismatch at the PbTe-In interface, phonons were not scattered as effectively as electrons. The highest zT obtained was 0.78 at 723 K for the sample with the lowest In content.
Resumo:
The role of elastic Taylor-Couette flow instabilities in the dynamic nonlinear viscoelastic response of an entangled wormlike micellar fluid is studied by large-amplitude oscillatory shear (LAOS) rheology and in situ polarized light scattering over a wide range of strain and angular frequency values, both above and below the linear crossover point. Well inside the nonlinear regime, higher harmonic decomposition of the resulting stress signal reveals that the normalized third harmonic I-3/I-1 shows a power-law behavior with strain amplitude. In addition, I-3/I-1 and the elastic component of stress amplitude sigma(E)(0) show a very prominent maximum at the strain value where the number density (n(v)) of the Taylor vortices is maximum. A subsequent increase in applied strain (gamma) results in the distortions of the vortices and a concomitant decrease in n(v), accompanied by a sharp drop in I-3 and sigma(E)(0). The peak position of the spatial correlation function of the scattered intensity along the vorticity direction also captures the crossover. Lissajous plots indicate an intracycle strain hardening for the values of gamma corresponding to the peak of I-3, similar to that observed for hard-sphere glasses.
Resumo:
We demonstrate diffusing-wave spectroscopy (DWS) in a localized region of a viscoelastically inhomogeneous object by measurement of the intensity autocorrelation g(2)(tau)] that captures only the decay introduced by the temperature-induced Brownian motion in the region. The region is roughly specified by the focal volume of an ultrasound transducer which introduces region specific mechanical vibration owing to insonification. Essential characteristics of the localized non-Markovian dynamics are contained in the decay of the modulation depth M(tau)], introduced by the ultrasound forcing in the focal volume selected, on g(2)(tau). The modulation depth M(tau(i)) at any delay time tau(i) can be measured by short-time Fourier transform of g(2)(tau) and measurement of the magnitude of the spectrum at the ultrasound drive frequency. By following the established theoretical framework of DWS, we are able to connect the decay in M(tau) to the mean-squared displacement (MSD) of scattering centers and the MSD to G*(omega), the complex viscoelastic spectrum. A two-region composite polyvinyl alcohol phantom with different viscoelastic properties is selected for demonstrating local DWS-based recovery of G*(omega) corresponding to these regions from the measured region specific M(tau(i))vs tau(i). The ultrasound-assisted measurement of MSD is verified by simulating, using a generalized Langevin equation (GLE), the dynamics of the particles in the region selected as well as by the usual DWS experiment without the ultrasound. It is shown that whereas the MSD obtained by solving the GLE without the ultrasound forcing agreed with its experimental counterpart covering small and large values of tau, the match was good only in the initial transients in regard to experimental measurements with ultrasound.
Resumo:
This report addresses the assessment of variation in elastic property of soft biological tissues non-invasively using laser speckle contrast measurement. The experimental as well as the numerical (Monte-Carlo simulation) studies are carried out. In this an intense acoustic burst of ultrasound (an acoustic pulse with high power within standard safety limits), instead of continuous wave, is employed to induce large modulation of the tissue materials in the ultrasound insonified region of interest (ROI) and it results to enhance the strength of the ultrasound modulated optical signal in ultrasound modulated optical tomography (UMOT) system. The intensity fluctuation of speckle patterns formed by interference of light scattered (while traversing through tissue medium) is characterized by the motion of scattering sites. The displacement of scattering particles is inversely related to the elastic property of the tissue. We study the feasibility of laser speckle contrast analysis (LSCA) technique to reconstruct a map of the elastic property of a soft tissue-mimicking phantom. We employ source synchronized parallel speckle detection scheme to (experimentally) measure the speckle contrast from the light traversing through ultrasound (US) insonified tissue-mimicking phantom. The measured relative image contrast (the ratio of the difference of the maximum and the minimum values to the maximum value) for intense acoustic burst is 86.44 % in comparison to 67.28 % for continuous wave excitation of ultrasound. We also present 1-D and 2-D image of speckle contrast which is the representative of elastic property distribution.
Resumo:
We use the bulk Hamiltonian for a three-dimensional topological insulator such as Bi-2 Se-3 to study the states which appear on its various surfaces and along the edge between two surfaces. We use both analytical methods based on the surface Hamiltonians (which are derived from the bulk Hamiltonian) and numerical methods based on a lattice discretization of the bulk Hamiltonian. We find that the application of a potential barrier along an edge can give rise to states localized at that edge. These states have an unusual energy-momentum dispersion which can be controlled by applying a potential along the edge; in particular, the velocity of these states can be tuned to zero. The scattering and conductance across the edge is studied as a function of the edge potential. We show that a magnetic field in a particular direction can also give rise to zero energy states on certain edges. We point out possible experimental ways of looking for the various edge states.
Resumo:
Single crystals of LaMn0.5Co0.5O3 belonging to the ferromagnetic-insulator and distorted perovskite class were grown using a four-mirror optical float zone furnace. The as-grown crystal crystallizes into an orthorhombic Pbnm structure. The spatially resolved 2D Raman scan reveals a strain-induced distribution of transition metal (TM)-oxygen (O) octahedral deformation in the as-grown crystal. A rigorous annealing process releases the strain, thereby generating homogeneous octahedral distortion. The octahedra tilt by reducing the bond angle TM-O-TM, resulting in a decline of the exchange energy in the annealed crystal. The critical behavior is investigated from the bulk magnetization. It is found that the ground state magnetic behavior assigned to the strain-free LaMn0.5Co0.5O3 crystal is of the 3D Heisenberg kind. Strain induces mean field-like interaction in some sites, and consequently, the critical exponents deviate from the 3D Heisenberg class in the as-grown crystal. The temperature-dependent Raman scattering study reveals strong spin-phonon coupling and the existence of two magnetic ground states in the same crystal. (C) 2014 AIP Publishing LLC.
Resumo:
Cu2Ge1-xInxSe3 (x = 0, 0.05, 0.1, 0.15) compounds were prepared by a solid state synthesis. The powder X-ray diffraction pattern of the undoped sample revealed an orthorhombic phase. The increase in doping content led to the appearance of additional peaks related to cubic and tetragonal phases along with the orthorhombic phase. This may be due to the substitutional disorder created by Indium doping. Scanning Electron Microscopy micrographs showed a continuous large grain growth with low porosity, which confirms the compaction of the samples after hot pressing. Elemental composition was measured by Electron Probe Micro Analyzer and confirmed that all the samples are in the stoichiometric ratio. The electrical resistivity (rho) systematically decreased with an increase in doping content, but increased with the temperature indicating a heavily doped semiconductor behavior. A positive Seebeck coefficient (S) of all samples in the entire temperature range reveal holes as predominant charge carriers. Positive Hall coefficient data for the compounds Cu2InxGe1-xSe3 (x = 0, 0.1) at room temperature (RT) confirm the sign of Seebeck coefficient. The trend of rho as a function of doping content for the samples Cu2InxGe1-xSe3 with x = 0 and 0.1 agrees with the measured charge carrier density calculated from Hall data. The total thermal conductivity increased with rising doping content, attributed to an increase in carrier thermal conductivity. The thermal conductivity revealed 1/T dependence, which indicates the dominance of Umklapp phonon scattering at elevated temperatures. The maximum thermoelectric figure of merit (ZT) = 0.23 at 723 K was obtained for Cu2In0.1Ge0.9Se3. (C)2014 Elsevier Ltd. All rights reserved.
Resumo:
Zn doped ternary compounds Cu2ZnxSn1-xSe3 (x = 0, 0.025, 0.05, 0.075) were prepared by solid state synthesis. The undoped compound showed a monoclinic crystal structure as a major phase, while the doped compounds showed a cubic crystal structure confirmed by powder XRD (X-Ray Diffraction). The surface morphology and elemental composition analysis for all the samples were studied by SEM (Scanning Electron Microscopy) and EPMA (Electron Probe Micro Analyzer), respectively. SEM micrographs of the hot pressed samples showed the presence of continuous and homogeneous grains confirming sufficient densification. Elemental composition of all the samples revealed an off-stoichiometry, which was determined by EPMA. Transport properties were measured between 324 K and 773 K. The electrical resistivity decreased up to the samples with Zn content x = 0.05 in Cu2ZnxSn1-xSe3, and slightly increased in the sample Cu2Zn0.075Sn0.925Se3. This behavior is consistent with the changes in the carrier concentration confirmed by room temperature Hall coefficient data. Temperature dependent electrical resistivity of all samples showed heavily doped semiconductor behavior. All the samples exhibit positive Seebeck coefficient (S) and Hall coefficient indicating that the majority of the carriers are holes. A linear increase in Seebeck coefficient with increase in temperature indicates the degenerate semiconductor behavior. The total thermal conductivity of the doped samples increased with a higher amount of doping, due to the increase in the carrier contribution. The total and lattice thermal conductivity of all samples showed 1/1 dependence, which points toward the dominance of phonon scattering at high temperatures. The maximum 1/TZF = 0.48 at 773 K was obtained for the sample Cu2SnSe3 due to a low thermal conductivity compared to the doped samples. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
One of the most-studied signals for physics beyond the standard model in the production of gauge bosons in electron-positron collisions is due to the anomalous triple gauge boson couplings in the Z(gamma) final state. In this work, we study the implications of this at the ILC with polarized beams for signals that go beyond traditional anomalous triple neutral gauge boson couplings. Here we report a dimension-8 CP-conserving Z(gamma)Z vertex that has not found mention in the literature. We carry out a systematic study of the anomalous couplings in general terms and arrive at a classification. We then obtain linear-order distributions with and without CP violation. Furthermore, we place the study in the context of general BSM interactions represented by e(+)e(-)Z(gamma) contact interactions. We set up a correspondence between the triple gauge boson couplings and the four-point contact interactions. We also present sensitivities on these anomalous couplings, which will be achievable at the ILC with realistic polarization and luminosity.
Resumo:
Optical transport behavior of organic photo-voltaic devices with nano-pillar transparent electrodes is investigated in this paper in order to understand possible enhancement of their charge-collection efficiency. Modeling and simulations of optical transport due to this architecture show an interesting regime of length-scale dependent optical characteristics. An electromagnetic wave propagation model is employed with simulation objectives toward understanding the mechanism of optical scattering and waveguide effects due to the nano-pillars and effective transmission through the active layer. Partial filling of gaps between the nano-pillars due to the nano-fabrication process is taken into consideration. Observations made in this paper will facilitate appropriate design rules for nano-pillar electrodes. (C) 2014 AIP Publishing LLC.
Resumo:
The effects of radiative coupling between scattering and absorbing aerosols, in an external mixture, on the aerosol radiative forcing (ARF) due to black carbon (BC), its sensitivity to the composite aerosol loading and composition, and surface reflectance are investigated using radiative transfer model simulations. The ARF due to BC is found to depend significantly on the optical properties of the `neighboring' (non-BC) aerosol species. The scattering due to these species significantly increases the top of the atmospheric warming due to black carbon aerosols, and significant changes in the radiative forcing efficiency of BC. This is especially significant over dark surfaces (such as oceans), despite the ARF due to BC being higher over snow and land-surfaces. The spatial heterogeneity of this effect (coupling or multiple scattering by neighboring aerosol species) imposes large uncertainty in the estimation ARF due to BC aerosols, especially over the oceans. (C) 2014 Elsevier Ltd. All rights reserved.
Resumo:
Dendrimers are highly branched polymeric nanoparticles whose structure and topology, largely, have determined their efficacy in a wide range of studies performed so far. An area of immense interest is their potential as drug and gene delivery vectors. Realizing this potential, depending on the nature of cell surface-dendrimer interactions, here we report controlled model membrane penetration and reorganization, using a model supported lipid bilayer and poly(ether imine) (PETIM) dendrimers of two generations. By systematically varying the areal density of the lipid bilayers, we provide a microscopic insight, through a combination of high resolution scattering, atomic force microscopy and atomistic molecular dynamics simulations, into the mechanism of PETIM dendrimer membrane penetration, pore formation and membrane re-organization induced by such interactions. Our work represents the first systematic observation of a regular barrel-like membrane spanning pore formation by dendrimers, tunable through lipid bilayer packing, without membrane disruption.