979 resultados para SYNCHROTON RADIATION
Resumo:
The persistent luminescence materials, barium aluminates doped with Eu(2+) and Dy(3+) (BaAl(2)O(4): Eu(2+),Dy(3+)), were prepared with the combustion synthesis at temperatures between 400 and 600 degrees C as well as with the solid state reaction at 1500 degrees C. The concentrations of Eu(2+)/Dy(3+) (in mol% of the Ba amount) ranged from 0.1/0.1 to 1.0/3.0. The electronic and defect energy level structures were studied with thermoluminescence (TL) and synchrotron radiation (SR) spectroscopies: UV-VUV excitation and emission, as well as with X-ray absorption near-edge structure (XANES) methods. Theoretical calculations using the density functional theory (DFT) were carried out in order to compare with the experimental data. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
Luminescent films containing terbium complex [Tb(acac)(3)(H(2)O)(3)] (acac = acetylacetonate) doped into a polycarbonate (PC) matrix were prepared and irradiated at low-dose gamma radiation with ratio of 5 and 10 kGy. The PC polymer was doped with 5% (w/w) of the Tb(3+) complex. The thermal behavior was investigated by utilization of differential scanning calorimetry (DSC) and thermogravimetry analysis (TGA). Changes in thermal stability due to the addition of doping agent into the polycarbonate matrix. Based on the emission spectra of PC:5% Tb(acac)(3) film were observed the characteristic bands arising from the (5)D(4) -> (7)F(J) transitions of Tb(3+) ion (J = 0-6), indicating the ability to obtain the luminescent films. Doped samples irradiated at low dose of gamma irradiation showed a decrease in luminescence intensity with increasing of the dose. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
The coating of cotton fiber is used in the textile industry to increase the mechanical resistance of the yarn and their resistance to vibration, friction, impact, and elongation, which are some of the forces to which the yarn is subjected during the weaving process. The main objective of this study was to investigate the use of synthetic hydrophilic polymers, poly(vinyl alcohol) (PVA), and poly(N-vinyl-2-pyrrolidone) (PVP) to coat 100% cotton textile fiber, with the aim of giving the fiber temporary mechanical resistance. For the fixation of the polymer on the fiber, UV-C radiation was used as the crosslinking process. The influence of the crosslinking process was determined through tensile testing of the coated fibers. The results indicated that UV-C radiation increased the mechanical resistance of the yarn coated with PVP by up to 44% and the yarn coated with PVA by up to 67% compared with the pure cotton yarn, that is, without polymeric coating and crosslinking. This study is of great relevance, and it is important to consider that UV-C radiation dispenses with the use of chemical substances and prevents the generation of toxic waste at the end of the process. (C) 2010 Wiley Periodicals, Inc. J Appl Polym Sci 119: 2560-2567, 2011
Resumo:
In order to evaluate the interactions between Au/Cu atoms and clean Si(l 11) surface, we used synchrotron radiation grazing incidence X-ray fluorescence analysis and theoretical calculations. Optimized geometries and energies on different adsorption sites indicate that the binding energies at different adsorption sites are high, suggesting a strong interaction between metal atom and silicon surface. The Au atom showed higher interaction than Cu atom. The theoretical and experimental data showed good agreement. Crown Copyright (C) 2009 Published by Elsevier B.V. All rights reserved.
Resumo:
Alachlor has been widely used in agriculture all over the world. It is suggested that it may be a carcinogen and an environmental estrogen. The aim of this work was to verify the degradation the alachlor by gamma radiation. Gamma radiation from (60)Co was used to degrade the alachlor herbicide in water and methanol solution. The alachlor in water and alcohol solution in the concentration of 100 mgL(-1) was irradiated with doses of 0.25-50 kGy, at dose rate 5-6 and 2.7 kGyh(-1). High performance liquid chromatography was used as an analytical technique to determine the degradation rate of herbicide studied.
Resumo:
Recent studies have shown that the optical properties of building exterior surfaces are important in terms of energy use and thermal comfort. While the majority of the studies are related to exterior surfaces, the radiation properties of interior surfaces are less thoroughly investigated. Development in the coil-coating industries has now made it possible to allocate different optical properties for both exterior and interior surfaces of steel-clad buildings. The aim of this thesis is to investigate the influence of surface radiation properties with the focus on the thermal emittance of the interior surfaces, the modeling approaches and their consequences in the context of the building energy performance and indoor thermal environment. The study consists of both numerical and experimental investigations. The experimental investigations include parallel field measurements on three similar test cabins with different interior and exterior surface radiation properties in Borlänge, Sweden, and two ice rink arenas with normal and low emissive ceiling in Luleå, Sweden. The numerical methods include comparative simulations by the use of dynamic heat flux models, Building Energy Simulation (BES), Computational Fluid Dynamics (CFD) and a coupled model for BES and CFD. Several parametric studies and thermal performance analyses were carried out in combination with the different numerical methods. The parallel field measurements on the test cabins include the air, surface and radiation temperatures and energy use during passive and active (heating and cooling) measurements. Both measurement and comparative simulation results indicate an improvement in the indoor thermal environment when the interior surfaces have low emittance. In the ice rink arenas, surface and radiation temperature measurements indicate a considerable reduction in the ceiling-to-ice radiation by the use of low emittance surfaces, in agreement with a ceiling-toice radiation model using schematic dynamic heat flux calculations. The measurements in the test cabins indicate that the use of low emittance surfaces can increase the vertical indoor air temperature gradients depending on the time of day and outdoor conditions. This is in agreement with the transient CFD simulations having the boundary condition assigned on the exterior surfaces. The sensitivity analyses have been performed under different outdoor conditions and surface thermal radiation properties. The spatially resolved simulations indicate an increase in the air and surface temperature gradients by the use of low emittance coatings. This can allow for lower air temperature at the occupied zone during the summer. The combined effect of interior and exterior reflective coatings in terms of energy use has been investigated by the use of building energy simulation for different climates and internal heat loads. The results indicate possible energy savings by the smart choice of optical properties on interior and exterior surfaces of the building. Overall, it is concluded that the interior reflective coatings can contribute to building energy savings and improvement of the indoor thermal environment. This can be numerically investigated by the choice of appropriate models with respect to the level of detail and computational load. This thesis includes comparative simulations at different levels of detail.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Com este trabalho, o objetivo foi estimar a radiação fotossinteticamente ativa (PAR) e correlacioná-la com a massa de matéria seca (MMSPA) da grama-esmeralda (Zoysia japonica Steud.), em superfícies com diferentes exposições e declividades. A pesquisa foi desenvolvida na Bacia Hidrográfica Experimental do Departamento de Engenharia Rural, FCAV/UNESP, Brasil, onde foram utilizadas as superfícies (H; 10 N; 30 N; 50 N; 10 S; 30 S; 50 S; 10 L; 30 L; 50 L; 10 O; 30 O e 50 O). Para a obtenção da radiação solar global, foi instalada uma estação meteorológica automatizada, onde a PAR (variável dependente) foi obtida por meio da equação y = a + bx, e a radiação global foi a independente. Para comparação de médias da MMSPA, utilizou-se o teste de Tukey, a 5% de probabilidade, e para verificar a relação existente PAR/MMSPA, o coeficiente de correlação linear simples. O resultado mostrou que o acúmulo desses efeitos na PAR aumenta com a exposição norte e decresce com a sul, sendo a exposição 50 N a mais indicada para taludes, não havendo correlação entre a PAR e a MMSPA para as superfícies avaliadas para o período estudado.
Resumo:
Avaliou-se a evolução anual das componentes global, direta e difusa da radiação solar incidente em superfícies inclinadas a 12,85; 22,85 e 32,85º, com face voltada ao Norte, em Botucatu-SP. Foram obtidas frações radiométricas para cada componente da radiação nas superfícies supracitadas, através de razões com a radiação global e a do topo da atmosfera. A sazonalidade foi avaliada através das médias mensais dos valores diários. As medidas ocorreram entre 04/1998 e 07/2001, em 22,85º; 08/2001 e 02/2003, em 12,85º; e de 03/2003 a 12/2007, em 32,85º, com medidas concomitantes no plano horizontal (referência). Os níveis das radiações global e direta nos planos inclinados foram inferiores no período de verão e superiores entre os equinócios, quando comparadas ao plano horizontal. A radiação difusa nas superfícies inclinadas foi inferior na maioria dos meses, com perdas de até 65%. Ocorreu uma tendência de aumento das diferenças entre as superfícies horizontal e inclinada com o incremento do ângulo em todas as componentes e frações da radiação incidente. A evolução anual das precipitações pluviométricas e da razão de nebulosidade afetou diretamente a transmissividade atmosférica das componentes direta e difusa na região.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)