941 resultados para SPICE simulations
Resumo:
This thesis covers the correction, and verification, development, and implementation of a computational fluid dynamics (CFD) model for an orifice plate meter. Past results were corrected and further expanded on with compressibility effects of acoustic waves being taken into account. One dynamic pressure difference transducer measures the time-varying differential pressure across the orifice meter. A dynamic absolute pressure measurement is also taken at the inlet of the orifice meter, along with a suitable temperature measurement of the mean flow gas. Together these three measurements allow for an incompressible CFD simulation (using a well-tested and robust model) for the cross-section independent time-varying mass flow rate through the orifice meter. The mean value of this incompressible mass flow rate is then corrected to match the mean of the measured flow rate( obtained from a Coriolis meter located up stream of the orifice meter). Even with the mean and compressibility corrections, significant differences in the measured mass flow rates at two orifice meters in a common flow stream were observed. This means that the compressibility effects associated with pulsatile gas flows is significant in the measurement of the time-varying mass flow rate. Future work (with the approach and initial runs covered here) will provide an indirect verification of the reported mass flow rate measurements.
Resumo:
The electrophoresis simulation software, GENTRANS, has been modified to include the interaction of analytes with an electrolyte additive to allow the simulation of liquid-phase EKC separations. The modifications account for interaction of weak and strong acid and base analytes with a single weak or strong acid or base background electrolyte additive and can be used to simulate a range of EKC separations with both charged and neutral additives. Simulations of separations of alkylphenyl ketones under real experimental conditions were performed using mobility and interaction constant data obtained from the literature and agreed well with experimental separations. Migration times in fused-silica capillaries and linear polyacrylamide-coated capillaries were within 7% of the experimental values, while peak widths were always narrower than the experimental values, but were still within 50% of those obtained by experiment. Simulations of sweeping were also performed; although migration time agreement was not as good as for simple EKC separations, peak widths were in good agreement, being within 1-50% of the experimental values. All simulations for comparison with experimental data were performed under real experimental conditions using a 47 cm capillary and a voltage of 20 kV and represent the first quantitative attempt at simulating EKC separations with and without sweeping.
Resumo:
Dynamic models for electrophoresis are based upon model equations derived from the transport concepts in solution together with user-inputted conditions. They are able to predict theoretically the movement of ions and are as such the most versatile tool to explore the fundamentals of electrokinetic separations. Since its inception three decades ago, the state of dynamic computer simulation software and its use has progressed significantly and Electrophoresis played a pivotal role in that endeavor as a large proportion of the fundamental and application papers were published in this periodical. Software is available that simulates all basic electrophoretic systems, including moving boundary electrophoresis, zone electrophoresis, ITP, IEF and EKC, and their combinations under almost exactly the same conditions used in the laboratory. This has been employed to show the detailed mechanisms of many of the fundamental phenomena that occur in electrophoretic separations. Dynamic electrophoretic simulations are relevant for separations on any scale and instrumental format, including free-fluid preparative, gel, capillary and chip electrophoresis. This review includes a historical overview, a survey of current simulators, simulation examples and a discussion of the applications and achievements of dynamic simulation.
Numerical simulations of impacts involving porous bodies: II. Comparison with laboratory experiments