891 resultados para SPATIAL STRUCTURE
Resumo:
Background In order to provide insights into the complex biochemical processes inside a cell, modelling approaches must find a balance between achieving an adequate representation of the physical phenomena and keeping the associated computational cost within reasonable limits. This issue is particularly stressed when spatial inhomogeneities have a significant effect on system's behaviour. In such cases, a spatially-resolved stochastic method can better portray the biological reality, but the corresponding computer simulations can in turn be prohibitively expensive. Results We present a method that incorporates spatial information by means of tailored, probability distributed time-delays. These distributions can be directly obtained by single in silico or a suitable set of in vitro experiments and are subsequently fed into a delay stochastic simulation algorithm (DSSA), achieving a good compromise between computational costs and a much more accurate representation of spatial processes such as molecular diffusion and translocation between cell compartments. Additionally, we present a novel alternative approach based on delay differential equations (DDE) that can be used in scenarios of high molecular concentrations and low noise propagation. Conclusions Our proposed methodologies accurately capture and incorporate certain spatial processes into temporal stochastic and deterministic simulations, increasing their accuracy at low computational costs. This is of particular importance given that time spans of cellular processes are generally larger (possibly by several orders of magnitude) than those achievable by current spatially-resolved stochastic simulators. Hence, our methodology allows users to explore cellular scenarios under the effects of diffusion and stochasticity in time spans that were, until now, simply unfeasible. Our methodologies are supported by theoretical considerations on the different modelling regimes, i.e. spatial vs. delay-temporal, as indicated by the corresponding Master Equations and presented elsewhere.
Resumo:
We examined properties of culture-level personality traits in ratings of targets (N=5,109) ages 12 to 17 in 24 cultures. Aggregate scores were generalizable across gender, age, and relationship groups and showed convergence with culture-level scores from previous studies of self-reports and observer ratings of adults, but they were unrelated to national character stereotypes. Trait profiles also showed cross-study agreement within most cultures, 8 of which had not previously been studied. Multidimensional scaling showed that Western and non-Western cultures clustered along a dimension related to Extraversion. A culture-level factor analysis replicated earlier findings of a broad Extraversion factor but generally resembled the factor structure found in individuals. Continued analysis of aggregate personality scores is warranted.