962 resultados para Road safety initiatives
Resumo:
Traffic safety engineers are among the early adopters of Bayesian statistical tools for analyzing crash data. As in many other areas of application, empirical Bayes methods were their first choice, perhaps because they represent an intuitively appealing, yet relatively easy to implement alternative to purely classical approaches. With the enormous progress in numerical methods made in recent years and with the availability of free, easy to use software that permits implementing a fully Bayesian approach, however, there is now ample justification to progress towards fully Bayesian analyses of crash data. The fully Bayesian approach, in particular as implemented via multi-level hierarchical models, has many advantages over the empirical Bayes approach. In a full Bayesian analysis, prior information and all available data are seamlessly integrated into posterior distributions on which practitioners can base their inferences. All uncertainties are thus accounted for in the analyses and there is no need to pre-process data to obtain Safety Performance Functions and other such prior estimates of the effect of covariates on the outcome of interest. In this slight, fully Bayesian methods may well be less costly to implement and may result in safety estimates with more realistic standard errors. In this manuscript, we present the full Bayesian approach to analyzing traffic safety data and focus on highlighting the differences between the empirical Bayes and the full Bayes approaches. We use an illustrative example to discuss a step-by-step Bayesian analysis of the data and to show some of the types of inferences that are possible within the full Bayesian framework.
Resumo:
Tort claims resulting from alleged highway defects have introduced an additional element in the planning, design, construction, and maintenance of highways. A survey of county governments in Iowa was undertaken in order to quantify the magnitude and determine the nature of this problem. This survey included the use of mailed questionnaires and personal interviews with County Engineers. Highway-related claims filed against counties in Iowa amounted to about $52,000,000 during the period 1973 through 1978. Over $30,000,000 in claims was pending at the end of 1978. Settlements of judgments were made at a cost of 12.2% of the amount claimed for those claims that had been disposed of, not including costs for handling claims, attorney fees, or court costs. There was no clear time trend in the amount of claims for the six-year period surveyed, although the anount claimed in 1978 was about double the average for the preceding five years. Problems that resulted in claims for damages from counties have generally related to alleged omissions in the use of traffic control devices or defects, often temporary, resulting from alleged inadequacies in highway maintenance. The absence of stop signs or warning signs often has been the central issue in a highway-related tort claim. Maintenance problems most frequently alleged have included inadequate shoulders, surface roughness, ice o? snow conditions, and loose gravel. The variation in the occurrence of tort claims among 85 counties in Iowa could not be related to any of the explanatory variables that were tested. Claims hppeared to have occurred randomly. However, using data from a subsample of 11 counties, a significant relationship was shown probably to exist between the amount of tort claims and the extensiveness of use of wcirning signs on the respective county road systems. Although there was no indication in any county that their use of warning signs did not conform with provisions of the Manual on Uniform Traffic Control Devices (Federal Highway Administration, Government Printing Office, Washington, D.C., 1978), many more warning signs were used in some counties than would be required to satisfy this minimum requirement. Sign vandalism reportedly is a problem in all counties. The threat of vandalism and the added costs incurred thereby have tended to inhibit more extensive use of traffic control devices. It also should be noted that there is no indication from this research of a correlation between the intensiveness of sign usage and highway safety. All highway maintenance activities introduce some extraordinary hazard for motorists. Generally effective methodologies have evolved for use on county road systems for routine maintenance activities, procedures that tend to reduce the hazard to practical and reasonably acceptable levels. Blading of loose-surfaced roads is an examples such a routine maintenance activity. Alternative patterns for blading that were investigated as part of this research offered no improvements in safety when compared with the method in current use and introduced a significant additional cost that was unacceptable, given the existing limitations in resources available for county roads.
Resumo:
The University of Iowa Office of the State Archaeologist (OSA) is delighted to welcome RAGBRAI riders to Iowa and we’re pleased to share a few details of our fascinating past as you ride across the state. We hope this booklet enhances your enjoyment and helps you learn something new each day of your ride, from the ancient site at Cherokee to the late 1800s lost town site of Bowen’s Prairie.
Resumo:
The Midwest Transportation Consortium (MTC) recently completed its sixth year of operation. The MTC has become an established portion of the research and educational programs at ISU and its partner universities. The MTC continues to emphasize its primary focus of developing human capital. For example, this semester, Fall, 2005, ISU has graduate scholars in its educational program. However, we also recognize that the federal grant is an opportunity to build programs at our respective universities that continue after the U.S. DOT UTCP may end. An example of building a long lasting program is the University of Missouri – St. Louis’ (UMSL) and its development of a transportation Ph.D. program in their business college. Admittedly, this program could have been started regardless, but Dr. Ray Mundy, Director of UMSL’s Transportation Scholars Program, believes that the MTC support of the transportation educational program at UMSL was the essential component in establishing a Ph.D. program. At ISU, the MTC has been instrumental in establishing two research and outreach programs, and both have themes that are related to the MTC’s theme of “Transportation System Management and Operation.” The Center for Weather Impacts on Mobility and Safety (C-WIMS) was recently established, and the Center for Road Infrastructure Management and Operations (RIMO) is in the process of being established. The MTC has a critical role in establishing each of these two programs. As part of the on-going MTC program, we have established an effective network that promotes the education of future transportation professionals and the development of new knowledge on how to manage transportation infrastructure and services in a more sustainable manner. The MTC has a track record of developing outstanding students; these students are now becoming leaders in the private sector, government, and academia. The MTC has also supported the development of an extensive research portfolio related to sustainable transportation asset management. More research projects are in the pipeline. Finally, the MTC has dedicated itself to the dissemination of asset management research results through an ongoing technology transfer program. This document provides a progress for the latest fiscal year of operation of the MTC, which ran from October 2004 through September 2005.
Resumo:
The Midwest Transportation Consortium (MTC) recently completed its sixth year of operation. The MTC has become an established portion of the research and educational programs at ISU and its partner universities. The MTC continues to emphasize its primary focus of developing human capital. For example, this semester, Fall, 2005, ISU has graduate scholars in its educational program. However, we also recognize that the federal grant is an opportunity to build programs at our respective universities that continue after the U.S. DOT UTCP may end. An example of building a long lasting program is the University of Missouri – St. Louis’ (UMSL) and its development of a transportation Ph.D. program in their business college. Admittedly, this program could have been started regardless, but Dr. Ray Mundy, Director of UMSL’s Transportation Scholars Program, believes that the MTC support of the transportation educational program at UMSL was the essential component in establishing a Ph.D. program. At ISU, the MTC has been instrumental in establishing two research and outreach programs, and both have themes that are related to the MTC’s theme of “Transportation System Management and Operation.” The Center for Weather Impacts on Mobility and Safety (C-WIMS) was recently established, and the Center for Road Infrastructure Management and Operations (RIMO) is in the process of being established. The MTC has a critical role in establishing each of these two programs. As part of the on-going MTC program, we have established an effective network that promotes the education of future transportation professionals and the development of new knowledge on how to manage transportation infrastructure and services in a more sustainable manner. The MTC has a track record of developing outstanding students; these students are now becoming leaders in the private sector, government, and academia. The MTC has also supported the development of an extensive research portfolio related to sustainable transportation asset management. More research projects are in the pipeline. Finally, the MTC has dedicated itself to the dissemination of asset management research results through an ongoing technology transfer program. This document provides a progress for the latest fiscal year of operation of the MTC, which ran from October 2004 through September 2005.
Resumo:
The Midwest Transportation Consortium (MTC) recently completed its sixth year of operation. The MTC has become an established portion of the research and educational programs at ISU and its partner universities. The MTC continues to emphasize its primary focus of developing human capital. For example, this semester, Fall, 2005, ISU has graduate scholars in its educational program. However, we also recognize that the federal grant is an opportunity to build programs at our respective universities that continue after the U.S. DOT UTCP may end. An example of building a long lasting program is the University of Missouri – St. Louis’ (UMSL) and its development of a transportation Ph.D. program in their business college. Admittedly, this program could have been started regardless, but Dr. Ray Mundy, Director of UMSL’s Transportation Scholars Program, believes that the MTC support of the transportation educational program at UMSL was the essential component in establishing a Ph.D. program. At ISU, the MTC has been instrumental in establishing two research and outreach programs, and both have themes that are related to the MTC’s theme of “Transportation System Management and Operation.” The Center for Weather Impacts on Mobility and Safety (C-WIMS) was recently established, and the Center for Road Infrastructure Management and Operations (RIMO) is in the process of being established. The MTC has a critical role in establishing each of these two programs. As part of the on-going MTC program, we have established an effective network that promotes the education of future transportation professionals and the development of new knowledge on how to manage transportation infrastructure and services in a more sustainable manner. The MTC has a track record of developing outstanding students; these students are now becoming leaders in the private sector, government, and academia. The MTC has also supported the development of an extensive research portfolio related to sustainable transportation asset management. More research projects are in the pipeline. Finally, the MTC has dedicated itself to the dissemination of asset management research results through an ongoing technology transfer program. This document provides a progress for the latest fiscal year of operation of the MTC, which ran from October 2004 through September 2005.
Resumo:
The Midwest Transportation Consortium (MTC) recently completed its sixth year of operation. The MTC has become an established portion of the research and educational programs at ISU and its partner universities. The MTC continues to emphasize its primary focus of developing human capital. For example, this semester, Fall, 2005, ISU has graduate scholars in its educational program. However, we also recognize that the federal grant is an opportunity to build programs at our respective universities that continue after the U.S. DOT UTCP may end. An example of building a long lasting program is the University of Missouri – St. Louis’ (UMSL) and its development of a transportation Ph.D. program in their business college. Admittedly, this program could have been started regardless, but Dr. Ray Mundy, Director of UMSL’s Transportation Scholars Program, believes that the MTC support of the transportation educational program at UMSL was the essential component in establishing a Ph.D. program. At ISU, the MTC has been instrumental in establishing two research and outreach programs, and both have themes that are related to the MTC’s theme of “Transportation System Management and Operation.” The Center for Weather Impacts on Mobility and Safety (C-WIMS) was recently established, and the Center for Road Infrastructure Management and Operations (RIMO) is in the process of being established. The MTC has a critical role in establishing each of these two programs. As part of the on-going MTC program, we have established an effective network that promotes the education of future transportation professionals and the development of new knowledge on how to manage transportation infrastructure and services in a more sustainable manner. The MTC has a track record of developing outstanding students; these students are now becoming leaders in the private sector, government, and academia. The MTC has also supported the development of an extensive research portfolio related to sustainable transportation asset management. More research projects are in the pipeline. Finally, the MTC has dedicated itself to the dissemination of asset management research results through an ongoing technology transfer program. This document provides a progress for the latest fiscal year of operation of the MTC, which ran from October 2004 through September 2005.
Resumo:
The Midwest Transportation Consortium (MTC) recently completed its sixth year of operation. The MTC has become an established portion of the research and educational programs at ISU and its partner universities. The MTC continues to emphasize its primary focus of developing human capital. For example, this semester, Fall, 2005, ISU has graduate scholars in its educational program. However, we also recognize that the federal grant is an opportunity to build programs at our respective universities that continue after the U.S. DOT UTCP may end. An example of building a long lasting program is the University of Missouri – St. Louis’ (UMSL) and its development of a transportation Ph.D. program in their business college. Admittedly, this program could have been started regardless, but Dr. Ray Mundy, Director of UMSL’s Transportation Scholars Program, believes that the MTC support of the transportation educational program at UMSL was the essential component in establishing a Ph.D. program. At ISU, the MTC has been instrumental in establishing two research and outreach programs, and both have themes that are related to the MTC’s theme of “Transportation System Management and Operation.” The Center for Weather Impacts on Mobility and Safety (C-WIMS) was recently established, and the Center for Road Infrastructure Management and Operations (RIMO) is in the process of being established. The MTC has a critical role in establishing each of these two programs. As part of the on-going MTC program, we have established an effective network that promotes the education of future transportation professionals and the development of new knowledge on how to manage transportation infrastructure and services in a more sustainable manner. The MTC has a track record of developing outstanding students; these students are now becoming leaders in the private sector, government, and academia. The MTC has also supported the development of an extensive research portfolio related to sustainable transportation asset management. More research projects are in the pipeline. Finally, the MTC has dedicated itself to the dissemination of asset management research results through an ongoing technology transfer program. This document provides a progress for the latest fiscal year of operation of the MTC, which ran from October 2004 through September 2005.
Resumo:
The Midwest Transportation Consortium (MTC) recently completed its sixth year of operation. The MTC has become an established portion of the research and educational programs at ISU and its partner universities. The MTC continues to emphasize its primary focus of developing human capital. For example, this semester, Fall, 2005, ISU has graduate scholars in its educational program. However, we also recognize that the federal grant is an opportunity to build programs at our respective universities that continue after the U.S. DOT UTCP may end. An example of building a long lasting program is the University of Missouri – St. Louis’ (UMSL) and its development of a transportation Ph.D. program in their business college. Admittedly, this program could have been started regardless, but Dr. Ray Mundy, Director of UMSL’s Transportation Scholars Program, believes that the MTC support of the transportation educational program at UMSL was the essential component in establishing a Ph.D. program. At ISU, the MTC has been instrumental in establishing two research and outreach programs, and both have themes that are related to the MTC’s theme of “Transportation System Management and Operation.” The Center for Weather Impacts on Mobility and Safety (C-WIMS) was recently established, and the Center for Road Infrastructure Management and Operations (RIMO) is in the process of being established. The MTC has a critical role in establishing each of these two programs. As part of the on-going MTC program, we have established an effective network that promotes the education of future transportation professionals and the development of new knowledge on how to manage transportation infrastructure and services in a more sustainable manner. The MTC has a track record of developing outstanding students; these students are now becoming leaders in the private sector, government, and academia. The MTC has also supported the development of an extensive research portfolio related to sustainable transportation asset management. More research projects are in the pipeline. Finally, the MTC has dedicated itself to the dissemination of asset management research results through an ongoing technology transfer program. This document provides a progress for the latest fiscal year of operation of the MTC, which ran from October 2004 through September 2005.
Resumo:
The Midwest Transportation Consortium (MTC) recently completed its sixth year of operation. The MTC has become an established portion of the research and educational programs at ISU and its partner universities. The MTC continues to emphasize its primary focus of developing human capital. For example, this semester, Fall, 2005, ISU has graduate scholars in its educational program. However, we also recognize that the federal grant is an opportunity to build programs at our respective universities that continue after the U.S. DOT UTCP may end. An example of building a long lasting program is the University of Missouri – St. Louis’ (UMSL) and its development of a transportation Ph.D. program in their business college. Admittedly, this program could have been started regardless, but Dr. Ray Mundy, Director of UMSL’s Transportation Scholars Program, believes that the MTC support of the transportation educational program at UMSL was the essential component in establishing a Ph.D. program. At ISU, the MTC has been instrumental in establishing two research and outreach programs, and both have themes that are related to the MTC’s theme of “Transportation System Management and Operation.” The Center for Weather Impacts on Mobility and Safety (C-WIMS) was recently established, and the Center for Road Infrastructure Management and Operations (RIMO) is in the process of being established. The MTC has a critical role in establishing each of these two programs. As part of the on-going MTC program, we have established an effective network that promotes the education of future transportation professionals and the development of new knowledge on how to manage transportation infrastructure and services in a more sustainable manner. The MTC has a track record of developing outstanding students; these students are now becoming leaders in the private sector, government, and academia. The MTC has also supported the development of an extensive research portfolio related to sustainable transportation asset management. More research projects are in the pipeline. Finally, the MTC has dedicated itself to the dissemination of asset management research results through an ongoing technology transfer program. This document provides a progress for the latest fiscal year of operation of the MTC, which ran from October 2004 through September 2005.
Resumo:
Research was undertaken to define an appropriate level of use of traffic control devices on rural secondary roads that carry very low traffic volumes. The goal of this research was to improve the safety and efficiency of travel on the rural secondary road system. This goal was to be accomplished by providing County Engineers with guidance concerning the cost-effective use of traffic control devices on very low volume rural roads. A further objective was to define the range of traffic volumes on the roads for which the recommendations would be appropriate. Little previous research has been directed toward roads that carry very low traffic volumes. Consequently, the factual input for this research was developed by conducting an inventory of the signs and markings actually in use on 2,069 miles of rural road in Iowa. Most of these roads carried 15 or fewer vehicles per day. Additional input was provided by a survey of the opinions of County Engineers and Supervisors in Iowa. Data from both the inventory and the opinion survey indicated a considerable lack of uniformity in the application of signs on very low volume rural roads. The number of warning signs installed varied from 0.24 per mile to 3.85 per mile in the 21 counties in which the inventory was carried out. The use of specific signs not only varied quite widely among counties but also indicated a lack of uniform application within counties. County officials generally favored varying the elaborateness of signing depending upon the type of surface and the volume of traffic on different roads. Less elaborate signing would be installed on an unpaved road than on a paved road. A concensus opinion was that roads carrying fewer than 25 vehicles per day should have fewer signs than roads carrying higher volumes. Although roads carrying 0 to 24 vehicles per day constituted over 24% of the total rural secondary system, they carried less than 3% of the total travel on that system. Virtually all of these roads are classified as area service roads and would thus be expected to carry only short trips primarily by local motorists. Consequently, it was concluded that the need for warning signs rarely can be demonstrated on unpaved rural roads with traffic volumes of fewer than 25 vehicles per day. It is recommended that each county designate a portion of its roads as an Area Service Level B system. All road segments with very low traffic volumes should be considered for inclusion in this system. Roads included in this system may receive a lesser level of maintenance and a reduced level of signing. The county is also afforded protection from liability arising from accidents occurring on roads designated as part of an Area Service Level B system. A uniform absence of warning signs on roads of this nature is not expected to have any discernible effect on the safety or quality of service on these very low volume roads. The resources conserved may be expended more effectively to upgrade maintenance and traffic control on roads carrying higher volumes where the beneficial effect on highway safety and service will be much more consequential.
Resumo:
Describing promising technologies that can be used now to enhance concrete paving practices.
Resumo:
Describing promising technologies that can be used now to enhance concrete paving practices.
Resumo:
Background/Purpose: Gouty arthritis (GA) is a chronic inflammatory disease. Targeting the inflammatory pathway through IL-1_ inhibition with canakinumab (CAN) may provide significant long-term benefits. CAN safety versus triamcinolone acetonide (TA) over initial 24 weeks (blinded study) for patients (pts) with history of frequent attacks (_3 in year before baseline) was reported earlier from core (_-RELIEVED [_-REL] and _-REL-II) and first extension (E1) studies1. Herein we present full 18-month long-term CAN safety data, including open-label second extension (E2) studies. Methods: GA pts completing _-REL E1 and _-REL-II E1 studies1 were enrolled in these 1-year, open-label, E2 studies. All pts entering E2, whether randomized to CAN or TA, received CAN 150 mg sc on demand upon new attack. Data are presented only for pts randomized to CAN, and are reported cumulatively, i.e. including corresponding data from previously reported core and E1 studies. Long-term safety outcomes and safety upon re-treatment are presented as incidence rate per 100 patient-years (pyr) of study participation for AEs and SAEs. Deaths are reported for all pts (randomized to CAN or TA). Selected predefined notable laboratory abnormalities are shown (neutrophils, platelets, liver and renal function tests). Long-term attack rate per year is also provided. Results: In total, 69/115 (60%) and 72/112 (64.3%) of the pts randomized to CAN in the two core studies entered the two E2 studies, of which 68 and 64 pts, respectively completed the E2 studies. The 2 study populations had differing baseline comorbidity and geographic origin. Lab data (not time adjusted) for neutropenia appears worse after retreatment in _-REL E2, and deterioration of creatinine clearance appears worse after retreatment (Table 1). The time-adjusted incidence rates for AEs were 302.4/100 pyr and 360/100 pyr, and for SAEs were 27.9/100 pyr and 13.9/100 pyr in _-REL E2 and _-REL-II E2 respectively (Table 1). The time-adjusted incidence rates of any AEs, infection AEs, any SAEs, and selected SAEs before and after re-treatment are presented in Table 1. Incidence rates for AEs and SAEs declined after re-treatment, with the exception of SAEs in _-REL-II E2, which increased from 2.9/100 pyr to 10.9/100 pyr (no infection SAEs after retreatment in _-REL-II E2, and other SAEs fit no special pattern). In the total safety population (N_454, core and all extensions), there were 4 deaths, 2 in the core studies previously reported1 and 2 during the _-REL E2 study (one patient in the CAN group died from pneumonia; one patient in the TA group who never received CAN died of pneumococcal sepsis). None of the deaths was suspected by investigators to be study drug related. The mean rates of new attacks per year on CAN were 1.21 and 1.18 in _-REL E2 and in _-REL-II E2. Conclusion: The clinical safety profile of CAN upon re-treatment was maintained long-term with no new infection concerns
Resumo:
Describing promising technologies that can be used now to enhance concrete paving practices.