994 resultados para Rigid plastic package industry


Relevância:

20.00% 20.00%

Publicador:

Resumo:

AIMS: Regenerative medicine is an emerging field with the potential to provide widespread improvement in healthcare and patient wellbeing via the delivery of therapies that can restore, regenerate or repair damaged tissue. As an industry, it could significantly contribute to economic growth if products are successfully commercialized. However, to date, relatively few products have reached the market owing to a variety of barriers, including a lack of funding and regulatory hurdles. The present study analyzes industry perceptions of the barriers to commercialization that currently impede the success of the regenerative medicine industry in the UK. MATERIALS & METHODS: The analysis is based on 20 interviews with leading industrialists in the field. RESULTS: The study revealed that scientific research in regenerative medicine is thriving in the UK. Unfortunately, lack of access to capital, regulatory hurdles, lack of clinical evidence leading to problems with reimbursement, as well as the culture of the NHS do not provide a good environment for the commercialization of regenerative medicine products. CONCLUSION: Policy interventions, including increased translational government funding, a change in NHS and NICE organization and policies, and regulatory clarity, would likely improve the general outcomes for the regenerative medicine industry in the UK.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigate plastic deformation of Zr41.2Ti13.8Cu12.5Ni10Be22.5 bulk metallic glass using depth sensing nanoindentation. Numerous serrations in the load-displacement curves during indentation, shear bands and pile-ups around the indent were observed. The results revealed that the serrated plastic flow behaviour in this alloy depends strongly on the indentation strain rate.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

By making use of the evolution equation of the damage field as derived from the statistical mesoscopic damage theory, we have preliminarily examined the inhomogeneous damage field in an elastic-plastic model under constant-velocity tension. Three types of deformation and damage field evolution are presented. The influence of the plastic matrix is examined. It seems that matrix plasticity may defer the failure due to damage evolution. A criterion for damage localization is consistent with the numerical results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A cylindrical cell model based on continuum theory for plastic constitutive behavior of short-fiber/particle reinforced composites is proposed. The composite is idealized as uniformly distributed periodic arrays of aligned cells, and each cell consists of a cylindrical inclusion surrounded by a plastically deforming matrix. In the analysis, the non-uniform deformation field of the cell is decomposed into the sum of the first order approximate field and the trial additional deformation field. The precise deformation field are determined based on the minimum strain energy principle. Systematic calculation results are presented for the influence of reinforcement volume fraction and shape on the overall mechanical behavior of the composites. The results are in good agreement with the existing finite element analyses and the experimental results. This paper attempts to stimulate the work to get the analytical constitutive relation of short-fiber/particle reinforced composites.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In brittle composites, such as whisker reinforced ceramics, the sliding of reinforcing fibers against the frictional resistance of matrix is of a pseudo-plastic deformation mechanism. High aspect-ratio whiskers possess larger pseudo-plastic deformation ability but are usually sparse, while, low aspect-ratio ones were distributed widely in the matrix and show low pseudo-plastic deformation ability (engagement effect), also. A comparative investigation was carried out in present study based on a multi-scale network model. The results indicate that the effect of low aspect-ratio whiskers is of most importance. Improving the engagement coefficient by raising the compactness of material seems a more practical way for optimization of discontinuous fiber-reinforced brittle composites in the present technological condition.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, the strain gradient theory proposed by Chen and Wang (2001 a, 2002b) is used to analyze an interface crack tip field at micron scales. Numerical results show that at a distance much larger than the dislocation spacing the classical continuum plasticity is applicable; but the stress level with the strain gradient effect is significantly higher than that in classical plasticity immediately ahead of the crack tip. The singularity of stresses in the strain gradient theory is higher than that in HRR field and it slightly exceeds or equals to the square root singularity and has no relation with the material hardening exponents. Several kinds of interface crack fields are calculated and compared. The interface crack tip field between an elastic-plastic material and a rigid substrate is different from that between two elastic-plastic solids. This study provides explanations for the crack growth in materials by decohesion at the atomic scale.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A material model for whisker-reinforced metal-matrix composites is constructed that consists of three kinds of essential elements: elastic medium, equivalent slip system, and fiber-bundle. The heterogeneity of material constituents in position is averaged, while the orientation distribution of whiskers and slip systems is considered in the structure of the material model. Crystal and interface sliding criteria are addressed. Based on the stress-strain response of the model material, an elasto-plastic constitutive relation is derived to discuss the initial and deformation induced anisotropy as well as other fundamental features. Predictions of the present theory for unidirectional-fiber-reinforced aluminum matrix composites are favorably compared with FEM results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The constrained deformation of an aluminium alloy foam sandwiched between steel substrates has been investigated. The sandwich plates are subjected to through-thickness shear and normal loading, and it is found that the face sheets constrain the foam against plastic deformation and result in a size effect: the yield strength increases with diminishing thickness of foam layer. The strain distribution across the foam core has been measured by a visual strain mapping technique, and a boundary layer of reduced straining was observed adjacent to the face sheets. The deformation response of the aluminium foam layer was modelled by the elastic-plastic finite element analysis of regular and irregular two dimensional honeycombs, bonded to rigid face sheets; in the simulations, the rotation of the boundary nodes of the cell-wall beam elements was set to zero to simulate full constraint from the rigid face sheets. It is found that the regular honeycomb under-estimates the size effect whereas the irregular honeycomb provides a faithful representation of both the observed size effect and the observed strain profile through the foam layer. Additionally, a compressible version of the Fleck-Hutchinson strain gradient theory was used to predict the size effect; by identifying the cell edge length as the relevant microstructural length scale the strain gradient model is able to reproduce the observed strain profiles across the layer and the thickness dependence of strength. © 2002 Elsevier Science Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The plastic collapse response of aluminium egg-box panels subjected to out-of-plane compression has been measured and modelled. It is observed that the collapse strength and energy absorption are sensitive to the level of in-plane constraint, with collapse dictated either by plastic buckling or by a travelling plastic knuckle mechanism. Drop weight tests have been performed at speeds of up to 6 m s-1, and an elevation in strength with impact velocity is noted. A 3D finite element shell model is needed in order to reproduce the observed behaviours. Additional calculations using an axisymmetric finite element model give the correct collapse modes but are less accurate than the more sophisticated 3D model. The finite element simulations suggest that the observed velocity dependence of strength is primarily due to strain-rate sensitivity of the aluminium sheet, with material inertia playing a negligible role. Finally, it is shown that the energy absorption capacity of the egg-box material is comparable to that of metallic foams. © 2003 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The strain rate dependence of plastic deformation of Ce60Al15CU10Ni15 bulk metallic glass was studied by nanoindentation. Even though the ratio of room temperature to the glass transition temperature was very high (0.72) for this alloy, the plastic deformation was dominated by shear banding under nanoindentation. The alloy exhibited a critical loading rate dependent serrated flow feature. That is, with increasing loading rate, the alloy exhibited a transition from less prominent serrated flow to pronounced serrated flow during continuous loading but from serrated to smoother flow during stepped loading.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Plastic deformation behaviors of Zr65Al10Ni10CU15 and Zr52.5Al10Ni10Cu15Be12.5 bulk metallic glasses (BMGs) are studied by using the depth-sensing nanoindentation, microindentation and uniaxial compression. The Be-containing BMG exhibits a significantly improved overall plastic strain compared with the Be-free alloy during compressive tests. Both BMGs show a loading-rate-dependent serrated flow during nanoindentation measurements, but the Be-containing alloy exhibits a much lower critical loading rate for the disappearance of the serration than the Be-free BMG. The shear band patterns developed during plastic deformation are investigated by microindentation technique, wherein much higher shear band density is found in the Be-containing alloy than in the Be-free alloy, indicating an easier nucleation of shear bands in the former BMG. The difference in the plastic deformation behavior of the two BMGs can be explained by a free volume model.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, the rigid particle filled polymer is studied in the hope to understand the real damage mechanisms. Two damage parameters were introduced and measured. One is the macro-damage of the materials calculated from the modulus measured, another is micro-damage describing the interfacial debonding or the percentage of the particle debonded from the matrix. The damage rate of the macro damage decreases, while the micro damage increases with the applied stress.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It is proved that Johnson's damage number is the sole similarity parameter for dynamic plastic shear failure of structures loaded impulsively, therefore, dynamic plastic shear failure can be understood when damage number reaches a critical value. It is suggested that the damage number be generally used to predict the dynamic plastic shear failure of structures under various kinds of dynamic loads (impulsive loading, rectangular pressure pulse, exponential pressure pulse, etc.,). One of the advantages for using the damage number to predict such kind of failure is that it is conveniently used for dissimilar material modeling.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A preliminary study is presented of the relationship between the microstructural aspects of failure and the fracture energy G//1//C for cracking parallel to the fibres in long-fibre/thermoplastic matrix composites. Fracture energies are measured by a new technique, and fracture surfaces generated by the test are examined by scanning electron microscopy.