932 resultados para Retrieval


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sea surface temperature (SST) can be estimated from day and night observations of the Spinning Enhanced Visible and Infra-Red Imager (SEVIRI) by optimal estimation (OE). We show that exploiting the 8.7 μm channel, in addition to the “traditional” wavelengths of 10.8 and 12.0 μm, improves OE SST retrieval statistics in validation. However, the main benefit is an improvement in the sensitivity of the SST estimate to variability in true SST. In a fair, single-pixel comparison, the 3-channel OE gives better results than the SST estimation technique presently operational within the Ocean and Sea Ice Satellite Application Facility. This operational technique is to use SST retrieval coefficients, followed by a bias-correction step informed by radiative transfer simulation. However, the operational technique has an additional “atmospheric correction smoothing”, which improves its noise performance, and hitherto had no analogue within the OE framework. Here, we propose an analogue to atmospheric correction smoothing, based on the expectation that atmospheric total column water vapour has a longer spatial correlation length scale than SST features. The approach extends the observations input to the OE to include the averaged brightness temperatures (BTs) of nearby clear-sky pixels, in addition to the BTs of the pixel for which SST is being retrieved. The retrieved quantities are then the single-pixel SST and the clear-sky total column water vapour averaged over the vicinity of the pixel. This reduces the noise in the retrieved SST significantly. The robust standard deviation of the new OE SST compared to matched drifting buoys becomes 0.39 K for all data. The smoothed OE gives SST sensitivity of 98% on average. This means that diurnal temperature variability and ocean frontal gradients are more faithfully estimated, and that the influence of the prior SST used is minimal (2%). This benefit is not available using traditional atmospheric correction smoothing.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Optimal estimation (OE) and probabilistic cloud screening were developed to provide lake surface water temperature (LSWT) estimates from the series of (advanced) along-track scanning radiometers (ATSRs). Variations in physical properties such as elevation, salinity, and atmospheric conditions are accounted for through the forward modelling of observed radiances. Therefore, the OE retrieval scheme developed is generic (i.e., applicable to all lakes). LSWTs were obtained for 258 of Earth's largest lakes from ATSR-2 and AATSR imagery from 1995 to 2009. Comparison to in situ observations from several lakes yields satellite in situ differences of −0.2 ± 0.7 K for daytime and −0.1 ± 0.5 K for nighttime observations (mean ± standard deviation). This compares with −0.05 ± 0.8 K for daytime and −0.1 ± 0.9 K for nighttime observations for previous methods based on operational sea surface temperature algorithms. The new approach also increases coverage (reducing misclassification of clear sky as cloud) and exhibits greater consistency between retrievals using different channel–view combinations. Empirical orthogonal function (EOF) techniques were applied to the LSWT retrievals (which contain gaps due to cloud cover) to reconstruct spatially and temporally complete time series of LSWT. The new LSWT observations and the EOF-based reconstructions offer benefits to numerical weather prediction, lake model validation, and improve our knowledge of the climatology of lakes globally. Both observations and reconstructions are publically available from http://hdl.handle.net/10283/88.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An initial validation of the Along Track Scanning Radiometer (ATSR) Reprocessing for Climate (ARC) retrievals of sea surface temperature (SST) is presented. ATSR-2 and Advanced ATSR (AATSR) SST estimates are compared to drifting buoy and moored buoy observations over the period 1995 to 2008. The primary ATSR estimates are of skin SST, whereas buoys measure SST below the surface. Adjustment is therefore made for the skin effect, for diurnal stratification and for differences in buoy–satellite observation time. With such adjustments, satellite-in situ differences are consistent between day and night within ~ 0.01 K. Satellite-in situ differences are correlated with differences in observation time, because of the diurnal warming and cooling of the ocean. The data are used to verify the average behaviour of physical and empirical models of the warming/cooling rates. Systematic differences between adjusted AATSR and in-situ SSTs against latitude, total column water vapour (TCWV), and wind speed are less than 0.1 K, for all except the most extreme cases (TCWV < 5 kg m–2, TCWV > 60 kg m–2). For all types of retrieval except the nadir-only two-channel (N2), regional biases are less than 0.1 K for 80% of the ocean. Global comparison against drifting buoys shows night time dual-view two-channel (D2) SSTs are warm by 0.06 ± 0.23 K and dual-view three-channel (D3) SSTs are warm by 0.06 ± 0.21 K (day-time D2: 0.07 ± 0.23 K). Nadir-only results are N2: 0.03 ± 0.33 K and N3: 0.03 ± 0.19 K showing the improved inter-algorithm consistency to ~ 0.02 K. This represents a marked improvement from the existing operational retrieval algorithms for which inter-algorithm inconsistency is > 0.5 K. Comparison against tropical moored buoys, which are more accurate than drifting buoys, gives lower error estimates (N3: 0.02 ± 0.13 K, D2: 0.03 ± 0.18 K). Comparable results are obtained for ATSR-2, except that the ATSR-2 SSTs are around 0.1 K warm compared to AATSR

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present new radiative transfer simulations to support determination of sea surface temperature (SST) from Along Track Scanning Radiometer (ATSR) imagery. The simulations are to be used within the ATSR Reprocessing for Climate project. The simulations are based on the “Reference Forward Model” line-by-line model linked with a sea surface emissivity model that accounts for wind speed and temperature, and with a discrete ordinates scattering model (DISORT). Input to the forward model is a revised atmospheric profile dataset, based on full resolution ERA-40, with a wider range of high-latitude profiles to address known retrieval biases in those regions. Analysis of the radiative impacts of atmospheric trace gases shows that geographical and temporal variation of N2O, CH4, HNO3, and CFC-11 and CFC-12 have effects of order 0.05, 0.2, 0.1 K on the 3.7, 11, 12 μm channels respectively. In addition several trace gases, neglected in previous studies, are included using fixed profiles contributing ~ 0.04 K to top-of-atmosphere BTs. Comparison against observations for ATSR2 and AATSR indicates that forward model biases have been reduced from 0.2 to 0.5 K for previous simulations to ~ 0.1 K.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Most of the operational Sea Surface Temperature (SST) products derived from satellite infrared radiometry use multi-spectral algorithms. They show, in general, reasonable performances with root mean square (RMS) residuals around 0.5 K when validated against buoy measurements, but have limitations, particularly a component of the retrieval error that relates to such algorithms' limited ability to cope with the full variability of atmospheric absorption and emission. We propose to use forecast atmospheric profiles and a radiative transfer model to simulate the algorithmic errors of multi-spectral algorithms. In the practical case of SST derived from the Spinning Enhanced Visible and Infrared Imager (SEVIRI) onboard Meteosat Second Generation (MSG), we demonstrate that simulated algorithmic errors do explain a significant component of the actual errors observed for the non linear (NL) split window algorithm in operational use at the Centre de Météorologie Spatiale (CMS). The simulated errors, used as correction terms, reduce significantly the regional biases of the NL algorithm as well as the standard deviation of the differences with drifting buoy measurements. The availability of atmospheric profiles associated with observed satellite-buoy differences allows us to analyze the origins of the main algorithmic errors observed in the SEVIRI field of view: a negative bias in the inter-tropical zone, and a mid-latitude positive bias. We demonstrate how these errors are explained by the sensitivity of observed brightness temperatures to the vertical distribution of water vapour, propagated through the SST retrieval algorithm.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper describes the techniques used to obtain sea surface temperature (SST) retrievals from the Geostationary Operational Environmental Satellite 12 (GOES-12) at the National Oceanic and Atmospheric Administration’s Office of Satellite Data Processing and Distribution. Previous SST retrieval techniques relying on channels at 11 and 12 μm are not applicable because GOES-12 lacks the latter channel. Cloud detection is performed using a Bayesian method exploiting fast-forward modeling of prior clear-sky radiances using numerical weather predictions. The basic retrieval algorithm used at nighttime is based on a linear combination of brightness temperatures at 3.9 and 11 μm. In comparison with traditional split window SSTs (using 11- and 12-μm channels), simulations show that this combination has maximum scatter when observing drier colder scenes, with a comparable overall performance. For daytime retrieval, the same algorithm is applied after estimating and removing the contribution to brightness temperature in the 3.9-μm channel from solar irradiance. The correction is based on radiative transfer simulations and comprises a parameterization for atmospheric scattering and a calculation of ocean surface reflected radiance. Potential use of the 13-μm channel for SST is shown in a simulation study: in conjunction with the 3.9-μm channel, it can reduce the retrieval error by 30%. Some validation results are shown while a companion paper by Maturi et al. shows a detailed analysis of the validation results for the operational algorithms described in this present article.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The ability of six scanning cloud radar scan strategies to reconstruct cumulus cloud fields for radiation study is assessed. Utilizing snapshots of clean and polluted cloud fields from large eddy simulations, an analysis is undertaken of error in both the liquid water path and monochromatic downwelling surface irradiance at 870 nm of the reconstructed cloud fields. Error introduced by radar sensitivity, choice of radar scan strategy, retrieval of liquid water content (LWC), and reconstruction scheme is explored. Given an in␣nitely sensitive radar and perfect LWC retrieval, domain average surface irradiance biases are typically less than 3 W m␣2 ␣m␣1, corresponding to 5–10% of the cloud radiative effect (CRE). However, when using a realistic radar sensitivity of ␣37.5 dBZ at 1 km, optically thin areas and edges of clouds are dif␣cult to detect due to their low radar re-ectivity; in clean conditions, overestimates are of order 10 W m␣2 ␣m␣1 (~20% of the CRE), but in polluted conditions, where the droplets are smaller, this increases to 10–26 W m␣2 ␣m␣1 (~40–100% of the CRE). Drizzle drops are also problematic; if treated as cloud droplets, reconstructions are poor, leading to large underestimates of 20–46 W m␣2 ␣m␣1 in domain average surface irradiance (~40–80% of the CRE). Nevertheless, a synergistic retrieval approach combining the detailed cloud structure obtained from scanning radar with the droplet-size information and location of cloud base gained from other instruments would potentially make accurate solar radiative transfer calculations in broken cloud possible for the first time.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Optimal estimation (OE) is applied as a technique for retrieving sea surface temperature (SST) from thermal imagery obtained by the Spinning Enhanced Visible and Infra-Red Imager (SEVIRI) on Meteosat 9. OE requires simulation of observations as part of the retrieval process, and this is done here using numerical weather prediction fields and a fast radiative transfer model. Bias correction of the simulated brightness temperatures (BTs) is found to be a necessary step before retrieval, and is achieved by filtered averaging of simulations minus observations over a time period of 20 days and spatial scale of 2.5° in latitude and longitude. Throughout this study, BT observations are clear-sky averages over cells of size 0.5° in latitude and longitude. Results for the OE SST are compared to results using a traditional non-linear retrieval algorithm (“NLSST”), both validated against a set of 30108 night-time matches with drifting buoy observations. For the OE SST the mean difference with respect to drifter SSTs is − 0.01 K and the standard deviation is 0.47 K, compared to − 0.38 K and 0.70 K respectively for the NLSST algorithm. Perhaps more importantly, systematic biases in NLSST with respect to geographical location, atmospheric water vapour and satellite zenith angle are greatly reduced for the OE SST. However, the OE SST is calculated to have a lower sensitivity of retrieved SST to true SST variations than the NLSST. This feature would be a disadvantage for observing SST fronts and diurnal variability, and raises questions as to how best to exploit OE techniques at SEVIRI's full spatial resolution.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Optimal estimation (OE) improves sea surface temperature (SST) estimated from satellite infrared imagery in the “split-window”, in comparison to SST retrieved using the usual multi-channel (MCSST) or non-linear (NLSST) estimators. This is demonstrated using three months of observations of the Advanced Very High Resolution Radiometer (AVHRR) on the first Meteorological Operational satellite (Metop-A), matched in time and space to drifter SSTs collected on the global telecommunications system. There are 32,175 matches. The prior for the OE is forecast atmospheric fields from the Météo-France global numerical weather prediction system (ARPEGE), the forward model is RTTOV8.7, and a reduced state vector comprising SST and total column water vapour (TCWV) is used. Operational NLSST coefficients give mean and standard deviation (SD) of the difference between satellite and drifter SSTs of 0.00 and 0.72 K. The “best possible” NLSST and MCSST coefficients, empirically regressed on the data themselves, give zero mean difference and SDs of 0.66 K and 0.73 K respectively. Significant contributions to the global SD arise from regional systematic errors (biases) of several tenths of kelvin in the NLSST. With no bias corrections to either prior fields or forward model, the SSTs retrieved by OE minus drifter SSTs have mean and SD of − 0.16 and 0.49 K respectively. The reduction in SD below the “best possible” regression results shows that OE deals with structural limitations of the NLSST and MCSST algorithms. Using simple empirical bias corrections to improve the OE, retrieved minus drifter SSTs are obtained with mean and SD of − 0.06 and 0.44 K respectively. Regional biases are greatly reduced, such that the absolute bias is less than 0.1 K in 61% of 10°-latitude by 30°-longitude cells. OE also allows a statistic of the agreement between modelled and measured brightness temperatures to be calculated. We show that this measure is more efficient than the current system of confidence levels at identifying reliable retrievals, and that the best 75% of satellite SSTs by this measure have negligible bias and retrieval error of order 0.25 K.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We show that retrievals of sea surface temperature from satellite infrared imagery are prone to two forms of systematic error: prior error (familiar from the theory of atmospheric sounding) and error arising from nonlinearity. These errors have different complex geographical variations, related to the differing geographical distributions of the main geophysical variables that determine clear-sky brightness-temperatures over the oceans. We show that such errors arise as an intrinsic consequence of the form of the retrieval (rather than as a consequence of sub-optimally specified retrieval coefficients, as is often assumed) and that the pattern of observed errors can be simulated in detail using radiative-transfer modelling. The prior error has the linear form familiar from atmospheric sounding. A quadratic equation for nonlinearity error is derived, and it is verified that the nonlinearity error exhibits predominantly quadratic behaviour in this case.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Motivated by the importance to weather and climate of the Indo-Pacific seas, we present a new calibration of the Visible Infrared Spin-Scan Radiometer (VISSR) on the geostationary meteorological satellite, GMS-5. VISSR imagery has significant potential for exploring the dynamics of the ocean and air–sea interactions in this poorly characterized region, by virtue of the VISSR's surface temperature retrieval capability and hourly sampling. However, the calibration of the thermal imagery supplied by the Japanese Meteorological Agency (JMA) is inconsistent with the spectral characteristics of the channels, and published details of the JMA calibration procedure are scant. We use the well-characterized Along-Track Scanning Radiometer 2 (ATSR-2) as a reference, and determine calibration corrections for GMS-5 VISSR. We obtain more credible VISSR brightness temperatures and demonstrate sea surface temperature (SST) retrieval that validates well against in situ measurements (bias ∼0.3 and scatter ∼0.4 K). Comparison with a widely used sea surface temperature analysis shows that the GMS-5 VISSR SST fields capture important spatial structure, absent in the analysis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The effects of a non-uniform wind field along the path of a scintillometer are investigated. Theoretical spectra are calculated for a range of scenarios where the crosswind varies in space or time and compared to the ‘ideal’ spectrum based on a constant uniform crosswind. It is verified that the refractive-index structure parameter relation with the scintillometer signal remains valid and invariant for both spatially and temporally-varying crosswinds. However, the spectral shape may change significantly preventing accurate estimation of the crosswind speed from the peak of the frequency spectrum and retrieval of the structure parameter from the plateau of the power spectrum. On comparison with experimental data, non-uniform crosswind conditions could be responsible for previously unexplained features sometimes seen in observed spectra. By accounting for the distribution of crosswind, theoretical spectra can be generated that closely replicate the observations, leading to a better understanding of the measurements. Spatial variability of wind speeds should be expected for paths other than those that are parallel to the surface and over flat, homogenous areas, whilst fluctuations in time are important for all sites.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This document outlines a practical strategy for achieving an observationally based quantification of direct climate forcing by anthropogenic aerosols. The strategy involves a four-step program for shifting the current assumption-laden estimates to an increasingly empirical basis using satellite observations coordinated with suborbital remote and in situ measurements and with chemical transport models. Conceptually, the problem is framed as a need for complete global mapping of four parameters: clear-sky aerosol optical depth δ, radiative efficiency per unit optical depth E, fine-mode fraction of optical depth ff, and the anthropogenic fraction of the fine mode faf. The first three parameters can be retrieved from satellites, but correlative, suborbital measurements are required for quantifying the aerosol properties that control E, for validating the retrieval of ff, and for partitioning fine-mode δ between natural and anthropogenic components. The satellite focus is on the “A-Train,” a constellation of six spacecraft that will fly in formation from about 2005 to 2008. Key satellite instruments for this report are the Moderate Resolution Imaging Spectroradiometer (MODIS) and Clouds and the Earth's Radiant Energy System (CERES) radiometers on Aqua, the Ozone Monitoring Instrument (OMI) radiometer on Aura, the Polarization and Directionality of Earth's Reflectances (POLDER) polarimeter on the Polarization and Anistropy of Reflectances for Atmospheric Sciences Coupled with Observations from a Lidar (PARASOL), and the Cloud and Aerosol Lider with Orthogonal Polarization (CALIOP) lidar on the Cloud–Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO). This strategy is offered as an initial framework—subject to improvement over time—for scientists around the world to participate in the A-Train opportunity. It is a specific implementation of the Progressive Aerosol Retrieval and Assimilation Global Observing Network (PARAGON) program, presented earlier in this journal, which identified the integration of diverse data as the central challenge to progress in quantifying global-scale aerosol effects. By designing a strategy around this need for integration, we develop recommendations for both satellite data interpretation and correlative suborbital activities that represent, in many respects, departures from current practice

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Atmospheric aerosols are now actively studied, in particular because of their radiative and climate impacts. Estimations of the direct aerosol radiative perturbation, caused by extinction of incident solar radiation, usually rely on radiative transfer codes and involve simplifying hypotheses. This paper addresses two approximations which are widely used for the sake of simplicity and limiting the computational cost of the calculations. Firstly, it is shown that using a Lambertian albedo instead of the more rigorous bidirectional reflectance distribution function (BRDF) to model the ocean surface radiative properties leads to large relative errors in the instantaneous aerosol radiative perturbation. When averaging over the day, these errors cancel out to acceptable levels of less than 3% (except in the northern hemisphere winter). The other scope of this study is to address aerosol non-sphericity effects. Comparing an experimental phase function with an equivalent Mie-calculated phase function, we found acceptable relative errors if the aerosol radiative perturbation calculated for a given optical thickness is daily averaged. However, retrieval of the optical thickness of non-spherical aerosols assuming spherical particles can lead to significant errors. This is due to significant differences between the spherical and non-spherical phase functions. Discrepancies in aerosol radiative perturbation between the spherical and non-spherical cases are sometimes reduced and sometimes enhanced if the aerosol optical thickness for the spherical case is adjusted to fit the simulated radiance of the non-spherical case.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The long observational record is critical to our understanding of the Earth’s climate, but most observing systems were not developed with a climate objective in mind. As a result, tremendous efforts have gone into assessing and reprocessing the data records to improve their usefulness in climate studies. The purpose of this paper is to both review recent progress in reprocessing and reanalyzing observations, and summarize the challenges that must be overcome in order to improve our understanding of climate and variability. Reprocessing improves data quality through more scrutiny and improved retrieval techniques for individual observing systems, while reanalysis merges many disparate observations with models through data assimilation, yet both aim to provide a climatology of Earth processes. Many challenges remain, such as tracking the improvement of processing algorithms and limited spatial coverage. Reanalyses have fostered significant research, yet reliable global trends in many physical fields are not yet attainable, despite significant advances in data assimilation and numerical modeling. Oceanic reanalyses have made significant advances in recent years, but will only be discussed here in terms of progress toward integrated Earth system analyses. Climate data sets are generally adequate for process studies and large-scale climate variability. Communication of the strengths, limitations and uncertainties of reprocessed observations and reanalysis data, not only among the community of developers, but also with the extended research community, including the new generations of researchers and the decision makers is crucial for further advancement of the observational data records. It must be emphasized that careful investigation of the data and processing methods are required to use the observations appropriately.