958 resultados para Reticulum endoplasmique


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cellular functions hinge on the ability of proteins to adopt their correct folds, and misfolded proteins can lead to disease. Here, we focus on the proteins that catalyze disulfide bond formation, a step in the oxidative folding pathway that takes place in specialized cellular compartments. In the endoplasmic reticulum of eukaryotes, disulfide formation is catalyzed by protein disulfide isomerase (PDI); by contrast, prokaryotes produce a family of disulfide bond (Dsb) proteins, which together achieve an equivalent outcome in the bacterial periplasm. The recent crystal structure of yeast PDI has increased our understanding of the function and mechanism of PDI. Comparison of the structure of yeast PDI with those of bacterial DsbC and DsbG reveals some similarities but also striking differences that suggest directions for future research aimed at unraveling the catalytic mechanism of disulfide bond formation in the cell.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A common feature associated with the replication of most RNA viruses is the formation of a unique membrane environment encapsulating the viral replication complex. For their part, flaviviruses are no exception, whereupon infection causes a dramatic rearrangement and induction of unique membrane structures within the cytoplasm of infected cells. These virus-induced membranes, termed paracrystalline arrays, convoluted membranes, and vesicle packets, all appear to have specific functions during replication and are derived from different organelles within the host cell. The aim of this study was to identify which protein(s) specified by the Australian strain of West Nile virus, Kunjin virus (KUNV), are responsible for the dramatic membrane alterations observed during infection. Thus, we have shown using immunolabeling of ultrathin cryosections of transfected cells that expression of the KUNV polyprotein intermediates NS4A-4B and NS213-34A, as well as that of individual NS4A proteins with and without the C-terminal transmembrane domain 2K, resulted in different degrees of rearrangement of cytoplasmic membranes. The formation of the membrane structures characteristic for virus infection required coexpression of an NS4A-NS4B cassette with the viral protease NS2B-3pro which was shown to be essential for the release of the individual NS4A and NS4B proteins. Individual expression of NS4A protein retaining the C-terminal transmembrane domain 2K resulted in the induction of membrane rearrangements most resembling virus-induced structures, while removal of the 2K domain led to a less profound membrane rearrangement but resulted in the redistribution of the NS4A protein to the Golgi apparatus. The results show that cleavage of the KUNV polyprotein NS4A-4B by the viral protease is the key initiation event in the induction of membrane rearrangement and that the NS4A protein intermediate containing the uncleaved C-terminal transmembrane domain plays an essential role in these membrane rearrangements.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Application of a computational membrane organization prediction pipeline, MemO, identified putative type II membrane proteins as proteins predicted to encode a single alpha-helical transmembrane domain (TMD) and no signal peptides. MemO was applied to RIKEN's mouse isoform protein set to identify 1436 non-overlapping genomic regions or transcriptional units (TUs), which encode exclusively type II membrane proteins. Proteins with overlapping predicted InterPro and TMDs were reviewed to discard false positive predictions resulting in a dataset comprised of 1831 transcripts in 1408 TUs. This dataset was used to develop a systematic protocol to document subcellular localization of type II membrane proteins. This approach combines mining of published literature to identify subcellular localization data and a high-throughput, polymerase chain reaction (PCR)-based approach to experimentally characterize subcellular localization. These approaches have provided localization data for 244 and 169 proteins. Type II membrane proteins are localized to all major organelle compartments; however, some biases were observed towards the early secretory pathway and punctate structures. Collectively, this study reports the subcellular localization of 26% of the defined dataset. All reported localization data are presented in the LOCATE database (http://www.locate.imb.uq.edu.au).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The trafficking of molecules and membranes within cells is a prerequisite for all aspects of cellular immune functions, including the delivery and recycling of cell-surface proteins, secretion of immune mediators, ingestion of pathogens and activation of lymphocytes. SNARE (soluble-N-ethylmaleimide-sensitive-factor accessory-protein receptor)-family members mediate membrane fusion during all steps of trafficking, and function in almost all aspects of innate and adaptive immune responses. Here, we provide an overview of the roles of SNAREs in immune cells, offering insight into one level at which precision and tight regulation are instilled on immune responses.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: Determination of the subcellular location of a protein is essential to understanding its biochemical function. This information can provide insight into the function of hypothetical or novel proteins. These data are difficult to obtain experimentally but have become especially important since many whole genome sequencing projects have been finished and many resulting protein sequences are still lacking detailed functional information. In order to address this paucity of data, many computational prediction methods have been developed. However, these methods have varying levels of accuracy and perform differently based on the sequences that are presented to the underlying algorithm. It is therefore useful to compare these methods and monitor their performance. Results: In order to perform a comprehensive survey of prediction methods, we selected only methods that accepted large batches of protein sequences, were publicly available, and were able to predict localization to at least nine of the major subcellular locations (nucleus, cytosol, mitochondrion, extracellular region, plasma membrane, Golgi apparatus, endoplasmic reticulum (ER), peroxisome, and lysosome). The selected methods were CELLO, MultiLoc, Proteome Analyst, pTarget and WoLF PSORT. These methods were evaluated using 3763 mouse proteins from SwissProt that represent the source of the training sets used in development of the individual methods. In addition, an independent evaluation set of 2145 mouse proteins from LOCATE with a bias towards the subcellular localization underrepresented in SwissProt was used. The sensitivity and specificity were calculated for each method and compared to a theoretical value based on what might be observed by random chance. Conclusion: No individual method had a sufficient level of sensitivity across both evaluation sets that would enable reliable application to hypothetical proteins. All methods showed lower performance on the LOCATE dataset and variable performance on individual subcellular localizations was observed. Proteins localized to the secretory pathway were the most difficult to predict, while nuclear and extracellular proteins were predicted with the highest sensitivity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Epidemiological studies previously identified cis-5,8,11,14,17-eicosapentaenoic acid (EPA) as the biologically active component of fish oil of benefit to the cardiovascular system. Although clinical investigations demonstrated its usefulness in surgical procedures, its mechanism of action still remained unclear. It was shown in this thesis, that EPA partially blocked the contraction of aortic smooth muscle cells to the vasoactive agents KCl and noradrenaline. The latter effect was likely caused by reducing calcium influx through receptor-operated channels, supporting a recent suggestion by Asano et al (1997). Consistently, EPA decreased noradrenaline-induced contractures in aortic tissue, in support of previous reports (Engler, 1992b). The observed effect of EPA on cell contractions to KCl was not simple due to blocking calcium influx through L-type channels, consistent with a previous suggestion by Hallaq et al (1992). Moreover, EPA caused a transient increase in [Ca2+]i in the absence of extracellular calcium. To resolve this it was shown that EPA increased inositol phosphate formation which, it is suggested, caused the release of calcium from an inositol phosphate-dependent internal binding site, possibly that of an intracellular membrane or superficial sarcoplasmic reticulum, producing the transient increase in [Ca2+]i. As it was shown that the cellular contractile filaments were not desensitised to calcium by EPA, it is suggested that the transient increase in [Ca2+]i subsequently blocks further cell contraction to KCl by activating membrane-associated potassium channels. Activation of potassium channels induces the cellular efflux of potassium ions, thereby hyperpolarising the plasma membrane and moving the membrane potential farther from the activation range for calcium channels. This would prevent calcium influx in the longer term and could explain the initial observed effect of EPA to block cell contraction to KCl.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

It has been shown that acute administration of ecothiopate iodine in vivo caused an approximate 80% depression of acetylcholinesterase activity in the diaphragms of mice. Inhibition of acetylcholinesterase was accompanied by an influx of calcium at the junctional region of the diaphragm, which continued during subsequent progressive development of a severe myopathy located in the same region. Myopathy was accompanied by loss of creatine kinase from the muscle and was represented, at the light microscope level, by hypercontraction, Procion Yellow staining and loss of cross striations within the muscle fibres. It appeared to reach a point of maximum severity approximately 3-6 hours after ecothiopate administration and then, by means of some repair/regeneration process, regained an apparently normal morphology within 72 hours of the intoxication. At the ultrastructural level, ecothiopate-induced myopathy was recognised by loss of Z-lines, swelling and vacuolation of mitochondria and sarcoplasmic reticulum, dissarray of myofilaments, crystal formation, and sometimes, by the complete obliteration of sarcomeric structure. The development of myopathy in vitro was shown to be nerve-mediated and to require a functional acetylcholine receptor for its development It was successfully treated therapeutically in vivo by pyridine-2-aldoxime methiodide and prophylactically by pyridostigmine bromide. However, the use of a range of membrane-on channel blockers, and of leupeptin, an inhibitor of calcium-activated-neutral-protease, have been unsuccessful in the prevention of ecothiopate-induced myopathy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

When HL60 cells were induced to differentiate to granulocyte-like cells with the agents N-methylformamide and tunicamycin an concentrations marginally below those which were cytotoxic, there was a decrease in the synthesis of the glucose- regulated proteins which preceded the expression of markers of a differentiated phenotype. There was a transient increase in the amount of hsp70 after 36 hours in NMF treated cells but in differentiated cells negligible amounts were detected. Inducers which were known to modulate hsp70 such as azetadine carboxylic acid did not induce differentiation suggesting early changes in the endoplasmic reticulum may be involved in the commitment to terminal differentiation of HL60 cells. These changes in group synthesis were not observed when K562 human chronic myelogenous leukemia cells were induced to differentiate to erythroid-like cells but there was a comparable increase in amounts of hsp70. When cells were treated with concentrations of drugs which brought about a loss in cell viability there was an early increase in the amount of hsp70 protein in the absence of any increase in synthesis. HL60 cells were treated with NMF (225mM), Adriamycin (1μM), or CB3717 (5μM) and there was an increase in the amounts of hsp70, in the absence of any new synthesis, which preceded any loss of membrane integrity and any significant changes in cell cycle but was concomitant with a later loss in viability of > 50% and a loss in proliferative potential. The amounts of hsp70 in the cell after treatment with any of the drugs was comparable to that obtained after a heat shock. Following a heat shock hsp70 was translocated from the cytoplasm to the nucleus, but treatment with toxic concentrations of drug caused hsp70 to remain localised in the cytoplasm. Changes in hsp70 turn-over was observed after a heat shock compared to NMF-treated cells. Morphological studies suggested that cells that had been treated with NMF and CB3717 were undergoing necrosis whereas the Adriamycin cells showed characteristics that were indicative of apoptosis. The data supports the hypothesis that an increase in amounts of hsp70 is an early marker of cell death.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Adjuvant arthritis (AA) is a condition that involves systemic oxidative stress. Unexpectedly, it was found that sarcoplasmic reticulum Ca2 +-ATPase (SERCA) activity was elevated in muscles of rats with AA compared to controls, suggesting possible conformational changes in the enzyme. There was no alteration in the nucleotide binding site but rather in the transmembrane domain according to the tryptophan polar/non-polar fluorescence ratio. Higher relative expression of SERCA, higher content of nitrotyrosine but no increase in phospholipid oxidation in AA SR was found. In vitro treatments of SR with HOCl showed that in AA animals SERCA activity was more susceptible to oxidative stress, but SR phospholipids were more resistant and SERCA could also be activated by phosphatidic acid. It was concluded that increased SERCA activity in AA was due to increased levels of SERCA protein and structural changes to the protein, probably induced by direct and specific oxidation involving reactive nitrogen species.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We studied the structural and functional alterations of SERCA in rats suffering from adjuvant arthritis (AA). AA was induced by intradermal administration of Mycobacterium butyricum (MB) to the base of the tail of Lewis rats. Injury of SERCA from skeletal muscles of AA rats was analyzed on days 7, 14, 21 and 28 after MB injection. Neither fragmentation, aggregation of SERCA protein, alterations in SH groups, nor oxidation of phosphatidylcholines and phosphatidylethanolamines in SR vesicles were observed in animals with AA. The only ROS/RNS modification was increased formation of nitrotyrosine. The activity of SERCA from AA animals decreased on day 21 after MB injection and was associated with a significant increase of protein carbonyls in sarcoplasmic reticulum (SR). In contrast, on day 28 an increase of SERCA activity was observed and protein carbonyl level reversed to control level. Concerning kinetic parameters, maximum reaction velocity (Vmax) decrease and increase was observed with respect to both substrates (Ca, ATP) on days 21 and 28, respectively, suggesting possible conformational changes of the enzyme. These changes were not associated with alterations in nucleotide binding site situated in cytosol, but rather with tryptophan fluorescence intensity ratio (cytosol/membrane) related to the transmembrane domain of SERCA. Elevated SERCA activity on day 28 was caused by its higher expression. Acidic phospholipids (PA), probably present in SR of AA rats, may contribute to the elevation of Ca-ATPase activity, as PA administration in vitro increased this activity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pituitary adenylate cyclase-activating polypeptide (PACAP) functions as a neuroprotective factor through the PACAP type 1 receptor, PAC1. In a previous work, we demonstrated that nerve growth factor augmented PAC1 gene expression through the activation of Sp1 via the Ras/MAPK pathway. We also observed that PAC1 expression in Neuro2a cells was transiently suppressed during in vitro ischemic conditions, oxygen-glucose deprivation (OGD). Because endoplasmic reticulum (ER) stress is induced by ischemia, we attempted to clarify how ER stress affects the expression of PAC1. Tunicamycin, which induces ER stress, significantly suppressed PAC1 gene expression, and salubrinal, a selective inhibitor of the protein kinase RNA-like endoplasmic reticulum kinase signaling pathway of ER stress, blocked the suppression. In luciferase reporter assay, we found that two Sp1 sites were involved in suppression of PAC1 gene expression due to tunicamycin or OGD. Immunocytochemical staining demonstrated that OGD-induced transglutaminase 2 (TG2) expression was suppressed by salubrinal or cystamine, a TG activity inhibitor. Further, the OGD-induced accumulation of cross-linked Sp1 in nuclei was suppressed by cystamine or salubrinal. Together with cystamine, R283, TG2-specific inhibitor, and siRNA specific for TG2 also ameliorated OGD-induced attenuation of PAC1 gene expression. These results suggest that Sp1 cross-linking might be crucial in negative regulation of PAC1 gene expression due to TG2 in OGD-induced ER stress. © 2013 by The American Society for Biochemistry and Molecular Biology, Inc.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

SNARE proteins (soluble N-ethylmaleimide-sensitive factor attachment protein receptors) mediate membrane interactions and are conventionally divided into Q-SNAREs and R-SNAREs according to the possession of a glutamine or arginine residue at the core of their SNARE domain. Here, we describe a set of R-SNAREs from the ciliate Paramecium tetraurelia consisting of seven families encoded by 12 genes that are expressed simultaneously. The complexity of the endomembrane system in Paramecium can explain this high number of genes. All P. tetraurelia synaptobrevins (PtSybs) possess a SNARE domain and show homology to the Longin family of R-SNAREs such as Ykt6, Sec22 and tetanus toxin-insensitive VAMP (TI-VAMP). We localized four exemplary PtSyb subfamilies with GFP constructs and antibodies on the light and electron microscopic level. PtSyb1-1, PtSyb1-2 and PtSyb3-1 were found in the endoplasmic reticulum, whereas PtSyb2 is localized exclusively in the contractile vacuole complex. PtSyb6 was found cytosolic but also resides in regularly arranged structures at the cell cortex (parasomal sacs), the cytoproct and oral apparatus, probably representing endocytotic compartments. With gene silencing, we showed that the R-SNARE of the contractile vacuole complex, PtSyb2, functions to maintain structural integrity as well as functionality of the osmoregulatory system but also affects cell division.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The periconceptional period, embracing the terminal stages of oocyte growth and post-fertilisation development up to implantation, is sensitive to parental nutrition. Deficiencies or excesses in a range of macro- and micronutrients during this period can lead to impairments in fertility, fetal development and long-term offspring health. Obesity and genotype-related differences in regional adiposity are associated with impaired liver function and insulin resistance, and contribute to fatty acid-mediated impairments in sperm viability and oocyte and embryo quality, all of which are associated with endoplasmic reticulum stress and compromised fertility. Disturbances to maternal protein metabolism can elevate ammonium concentrations in reproductive tissues and disturb embryo and fetal development. Associated with this are disturbances to one-carbon metabolism, which can lead to epigenetic modifications to DNA and associated proteins in offspring that are both insulin resistant and hypertensive. Many enzymes involved in epigenetic gene regulation use metabolic cosubstrates (e.g. acetyl CoA and S-adenosyl methionine) to modify DNA and associated proteins, and so act as 'metabolic sensors' providing a link between parental nutritional status and gene regulation. Separate to their genomic contribution, spermatozoa can also influence embryo development via direct interactions with the egg and by seminal plasma components that act on oviductal and uterine tissues. © IETS 2014.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Astrocytes in the rat thalamus display spontaneous [Ca2+]i oscillations that are due to intracellular release, but are not dependent on neuronal activity. In this study we have investigated the mechanisms involved in these spontaneous [Ca2+]i oscillations using slices loaded with Fluo-4 AM (5 μM) and confocal microscopy. Bafilomycin A1 incubation had no effect on the number of spontaneous [Ca2+]i oscillations indicating that they were not dependent on vesicular neurotransmitter release. Oscillations were also unaffected by ryanodine. Phospholipase C (PLC) inhibition decreased the number of astrocytes responding to metabotropic glutamate receptor (mGluR) activation but did not reduce the number of spontaneously active astrocytes, indicating that [Ca2+]i increases are not due to membrane-coupled PLC activation. Spontaneous [Ca2+]i increases were abolished by an IP3 receptor antagonist, whilst the protein kinase C (PKC) inhibitor chelerythrine chloride prolonged their duration, indicating a role for PKC and inositol 1,4,5,-triphosphate receptor activation. BayK8644 increased the number of astrocytes exhibiting [Ca2+]i oscillations, and prolonged the responses to mGluR activation, indicating a possible effect on store-operated Ca2+ entry. Increasing [Ca2+]o increased the number of spontaneously active astrocytes and the number of transients exhibited by each astrocyte. Inhibition of the endoplasmic reticulum Ca2+ ATPase by cyclopiazonic acid also induced [Ca2+]i transients in astrocytes indicating a role for cytoplasmic Ca2+ in the induction of spontaneous oscillations. Incubation with 20 μM Fluo-4 reduced the number of astrocytes exhibiting spontaneous increases. This study indicates that Ca2+ has a role in triggering Ca2+ release from an inositol 1,4,5,-triphosphate sensitive store in astrocytes during the generation of spontaneous [Ca2+]i oscillations

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background - The main processing pathway for MHC class I ligands involves degradation of proteins by the proteasome, followed by transport of products by the transporter associated with antigen processing (TAP) to the endoplasmic reticulum (ER), where peptides are bound by MHC class I molecules, and then presented on the cell surface by MHCs. The whole process is modeled here using an integrated approach, which we call EpiJen. EpiJen is based on quantitative matrices, derived by the additive method, and applied successively to select epitopes. EpiJen is available free online. Results - To identify epitopes, a source protein is passed through four steps: proteasome cleavage, TAP transport, MHC binding and epitope selection. At each stage, different proportions of non-epitopes are eliminated. The final set of peptides represents no more than 5% of the whole protein sequence and will contain 85% of the true epitopes, as indicated by external validation. Compared to other integrated methods (NetCTL, WAPP and SMM), EpiJen performs best, predicting 61 of the 99 HIV epitopes used in this study. Conclusion - EpiJen is a reliable multi-step algorithm for T cell epitope prediction, which belongs to the next generation of in silico T cell epitope identification methods. These methods aim to reduce subsequent experimental work by improving the success rate of epitope prediction.