947 resultados para Resource–capability Combination


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Complex networks have been characterised by their specific connectivity patterns (network motifs), but their building blocks can also be identified and described by node-motifs-a combination of local network features. One technique to identify single node-motifs has been presented by Costa et al. (L. D. F. Costa, F. A. Rodrigues, C. C. Hilgetag, and M. Kaiser, Europhys. Lett., 87, 1, 2009). Here, we first suggest improvements to the method including how its parameters can be determined automatically. Such automatic routines make high-throughput studies of many networks feasible. Second, the new routines are validated in different network-series. Third, we provide an example of how the method can be used to analyse network time-series. In conclusion, we provide a robust method for systematically discovering and classifying characteristic nodes of a network. In contrast to classical motif analysis, our approach can identify individual components (here: nodes) that are specific to a network. Such special nodes, as hubs before, might be found to play critical roles in real-world networks.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We construct and analyze a microscopic model for insulating rocksalt ordered double perovskites, with the chemical formula A(2)BB'O(6), where the B' atom has a 4d(1) or 5d(1) electronic configuration and forms a face-centered-cubic lattice. The combination of the triply degenerate t(2g) orbital and strong spin-orbit coupling forms local quadruplets with an effective spin moment j=3/2. Moreover, due to strongly orbital-dependent exchange, the effective spins have substantial biquadratic and bicubic interactions (fourth and sixth order in the spins, respectively). This leads, at the mean-field level, to three main phases: an unusual antiferromagnet with dominant octupolar order, a ferromagnetic phase with magnetization along the [110] direction, and a nonmagnetic but quadrupolar ordered phase, which is stabilized by thermal fluctuations and intermediate temperatures. All these phases have a two-sublattice structure described by the ordering wave vector Q=2 pi(001). We consider quantum fluctuations and argue that in the regime of dominant antiferromagnetic exchange, a nonmagnetic valence-bond solid or quantum-spin-liquid state may be favored instead. Candidate quantum-spin-liquid states and their basic properties are described. We also address the effect of single-site anisotropy driven by lattice distortions. Existing and possible future experiments are discussed in light of these results.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The combination of metallic phthalocyanines (MPcs) and biomolecules has been explored in the literature either as mimetic systems to investigate molecular interactions or as supporting layers to immobilize biomolecules. Here, Langmuir-Blodgett (LB) films containing the phospholipid dimyristoyl phosphatidic acid (DMPA) mixed either with iron phthalocyanine (FePc) or with lutetium bisphthalocyanine (LuPc(2)) were applied as ITO modified-electrodes in the detection of catechol using cyclic voltammetry. The mixed Langmuir films of FePc + DMPA and LuPc(2) + DMPA displayed surface-pressure isotherms with no evidence of molecular-level interactions. The Fourier Transform Infrared (FTIR) spectra of the multilayer LB films confirmed the lack of interaction between the components. The DMPA and the FePc molecules were found to be oriented perpendicularly to the substrate, while LuPc(2) molecules were randomly organized. The phospholipid matrix induced a remarkable electrocatalytic effect on the phthalocyanines; as a result the mixed LB films deposited on ITO could be used to detect catechol with detection limits of 4.30 x 10(-7) and 3.34 x 10(-7) M for FePc + DMPA and LuPc(2) + DMPA, respectively. Results from kinetics experiments revealed that ion diffusion dominated the response of the modified electrodes. The sensitivity was comparable to that of other non-enzymatic sensors, which is sufficient to detect catechol in the food industry. The higher stability of the electrochemical response of the LB films and the ability to control the molecular architecture are promising for further studies with incorporation of biomolecules.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We calculate the entanglement entropy of blocks of size x embedded in a larger system of size L, by means of a combination of analytical and numerical techniques. The complete entanglement entropy in this case is a sum of three terms. One is a universal x- and L-dependent term, first predicted by Calabrese and Cardy, the second is a nonuniversal term arising from the thermodynamic limit, and the third is a finite size correction. We give an explicit expression for the second, nonuniversal, term for the one-dimensional Hubbard model, and numerically assess the importance of all three contributions by comparing to the entropy obtained from fully numerical diagonalization of the many-body Hamiltonian. We find that finite-size corrections are very small. The universal Calabrese-Cardy term is equally small for small blocks, but becomes larger for x > 1. In all investigated situations, however, the by far dominating contribution is the nonuniversal term stemming from the thermodynamic limit.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Schistosomes are blood flukes which cause schistosomiasis, a disease affecting approximately 200 million people worldwide. Along with several other important human parasites including trypanosomes and Plasmodium, schistosomes lack the de novo pathway for purine synthesis and depend exclusively on the salvage pathway for their purine requirements, making the latter an attractive target for drug development. Part of the pathway involves the conversion of inosine (or guanosine) into hypoxanthine (or guanine) together with ribose-1-phosphate (R1P) or vice versa. This inter-conversion is undertaken by the enzyme purine nucleoside phosphorylase (PNP) which has been used as the basis for the development of novel anti-malarials, conceptually validating this approach. It has been suggested that, during the reverse reaction, R1P binding to the enzyme would occur only as a consequence of conformational changes induced by hypoxanthine, thus making a binary PNP-R1P complex unlikely. Contradictory to this statement, a crystal structure of just such a binary complex involving the Schistosoma mansoni enzyme has been successfully obtained. The ligand shows an intricate hydrogen-bonding network in the phosphate and ribose binding sites and adds a further chapter to our knowledge which could be of value in the future development of selective inhibitors.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: Cystatins are inhibitors of cysteine proteases. The majority are only weak inhibitors of human cathepsin B, which has been associated with cancer, Alzheimer's disease and arthritis. Results: Starting from the sequences of oryzacystatin-1 and canecystatin-1, a shuffling library was designed and a hybrid clone obtained, which presented higher inhibitory activity towards cathepsin B. This clone presented two unanticipated point mutations as well as an N-terminal deletion. Reversing each point mutation independently or both simultaneously abolishes the inhibitory activity towards cathepsin B. Homology modeling together with experimental studies of the reverse mutants revealed the likely molecular determinants of the improved inhibitory activity to be related to decreased protein stability. Conclusion: A combination of experimental approaches including gene shuffling, enzyme assays and reverse mutation allied to molecular modeling has shed light upon the unexpected inhibitory properties of certain cystatin mutants against Cathepsin B. We conclude that mutations disrupting the hydrophobic core of phytocystatins increase the flexibility of the N-terminus, leading to an increase in inhibitory activity. Such mutations need not affect the inhibitory site directly but may be observed distant from it and manifest their effects via an uncoupling of its three components as a result of increased protein flexibility.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The title 2:1 complex of 3-nitrophenol (MNP) and 4,4'-bipyridyl N, N'-dioxide (DPNO), 2C(6)H(5)NO(3)center dot C(10)H(8)N(2)O(2) or 2MNP center dot DPNO, crystallizes as a centrosymmetric three-component adduct with a dihedral angle of 59.40 (8)degrees between the planes of the benzene rings of MNP and DPNO (the DPNO moiety lies across a crystallographic inversion centre located at the mid-point of the C-C bond linking its aromatic rings). The complex owes its formation to O-H center dot center dot center dot O hydrogen bonds [O center dot center dot center dot O = 2.605 (3) angstrom]. Molecules are linked by intermolecular C-H center dot center dot center dot O and C-H center dot center dot center dot N interactions forming R(2)(1) (6) and R(2)(2) (10) rings, and R(6)(6) (34) and R(4)(4) (26) macro-rings, all of which are aligned along the [(1) over bar 01] direction, and R(2)(2) (10) and R(2)(1) (7) rings aligned along the [010] direction. The combination of chains of rings along the [(1) over bar 01] and [010] directions generates the three-dimensional structure. A total of 27 systems containing the DNPO molecule and forming molecular complexes of an organic nature were analysed and compared with the structural characteristics of the dioxide reported here. The N-O distance [1.325 (2) angstrom] depends not only on the interactions involving the O atom at the N-O group, but also on the structural ordering and additional three-dimensional interactions in the crystal structure. A density functional theory (DFT) optimized structure at the B3LYP/6-311G(d,p) level is compared with the molecular structure in the solid state.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Schistosomes are unable to synthesize purines de novo and depend exclusively on the salvage pathway for their purine requirements. It has been suggested that blockage of this pathway could lead to parasite death. The enzyme purine nucleoside phosphorylase (PNP) is one of its key components and molecules designed to inhibit the low-molecular-weight (LMW) PNPs, which include both the human and schistosome enzymes, are typically analogues of the natural substrates inosine and guanosine. Here, it is shown that adenosine both binds to Schistosoma mansoni PNP and behaves as a weak micromolar inhibitor of inosine phosphorolysis. Furthermore, the first crystal structures of complexes of an LMW PNP with adenosine and adenine are reported, together with those with inosine and hypoxanthine. These are used to propose a structural explanation for the selective binding of adenosine to some LMW PNPs but not to others. The results indicate that transition-state analogues based on adenosine or other 6-amino nucleosides should not be discounted as potential starting points for alternative inhibitors.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The title adduct, C(7)H(5)NO(4)center dot C(6)H(6)N(2)O(3), forms part of an ongoing study of the design of non-centrosymmetric systems based on 3-methy-4-nitropyridine 1-oxide. The components of the adduct are linked by intermolecular O-H center dot center dot center dot O hydrogen bonds. The rings of the two components are nearly planar, with a dihedral angle of 11.9 (2)degrees between the planes. The supramolecular structure shows that molecules of the title complex are linked into sheets by a combination of strong O-H center dot center dot center dot O and weak C-H center dot center dot center dot O hydrogen bonds.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The diluted magnetic semiconductors are promising materials for spintronic applications. Usually one intents to find the ferromagnetic state but recently the antiferromagnetism (AFM) was proposed to have some advantages. In this work, we verify the possibility to obtain spin polarization with an AFM state. In particular, we studied GaN 5% double doped with two different transition metals atoms (Mn and Co or Cr and Ni), forming the Mn(x)Co(0.056-x)Ga(0.944)N and Cr(x)Ni(0.056-x)Ga(0.944)N quaternary alloys. In order to simulate these systems in a more realistic way, and take into account composition fluctuations, we adapted the generalized quasichemical approach to diluted alloys, which is used in combination with spin density-functional theory. We find that is possible to obtain an AFM ground state up to 70% spin polarization.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The fast and reversible phase transition mechanism between crystalline and amorphous phases of Ge(2)Sb(2)Te(5) has been in debate for several years. Through employing first-principles density functional theory calculations, we identify a direct structural link between the metastable crystalline and amorphous phases. The phase transition is driven by the displacement of Ge atoms along the rocksalt [111] direction from stable octahedron to high energy unstable tetrahedron sites close to the intrinsic vacancy regions, which generates a high energy intermediate phase between metastable and amorphous phases. Due to the instability of Ge at the tetrahedron sites, the Ge atoms naturally shift away from those sites, giving rise to the formation of local-ordered fourfold motifs and the long-range structural disorder. Intrinsic vacancies, which originate from Sb(2)Te(3), lower the energy barrier for Ge displacements, and hence, their distribution plays an important role in the phase transition. The high energy intermediate configuration can be obtained experimentally by applying an intense laser beam, which overcomes the thermodynamic barrier from the octahedron to tetrahedron sites. The high figure of merit of Ge(2)Sb(2)Te(5) is achieved from the optimal combination of intrinsic vacancies provided by Sb(2)Te(3) and the instability of the tetrahedron sites provided by GeTe.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: There are several studies in the literature depicting measurement error in gene expression data and also, several others about regulatory network models. However, only a little fraction describes a combination of measurement error in mathematical regulatory networks and shows how to identify these networks under different rates of noise. Results: This article investigates the effects of measurement error on the estimation of the parameters in regulatory networks. Simulation studies indicate that, in both time series (dependent) and non-time series (independent) data, the measurement error strongly affects the estimated parameters of the regulatory network models, biasing them as predicted by the theory. Moreover, when testing the parameters of the regulatory network models, p-values computed by ignoring the measurement error are not reliable, since the rate of false positives are not controlled under the null hypothesis. In order to overcome these problems, we present an improved version of the Ordinary Least Square estimator in independent (regression models) and dependent (autoregressive models) data when the variables are subject to noises. Moreover, measurement error estimation procedures for microarrays are also described. Simulation results also show that both corrected methods perform better than the standard ones (i.e., ignoring measurement error). The proposed methodologies are illustrated using microarray data from lung cancer patients and mouse liver time series data. Conclusions: Measurement error dangerously affects the identification of regulatory network models, thus, they must be reduced or taken into account in order to avoid erroneous conclusions. This could be one of the reasons for high biological false positive rates identified in actual regulatory network models.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: Extracellular vesicles in yeast cells are involved in the molecular traffic across the cell wall. In yeast pathogens, these vesicles have been implicated in the transport of proteins, lipids, polysaccharide and pigments to the extracellular space. Cellular pathways required for the biogenesis of yeast extracellular vesicles are largely unknown. Methodology/Principal Findings: We characterized extracellular vesicle production in wild type (WT) and mutant strains of the model yeast Saccharomyces cerevisiae using transmission electron microscopy in combination with light scattering analysis, lipid extraction and proteomics. WT cells and mutants with defective expression of Sec4p, a secretory vesicle-associated Rab GTPase essential for Golgi-derived exocytosis, or Snf7p, which is involved in multivesicular body (MVB) formation, were analyzed in parallel. Bilayered vesicles with diameters at the 100-300 nm range were found in extracellular fractions from yeast cultures. Proteomic analysis of vesicular fractions from the cells aforementioned and additional mutants with defects in conventional secretion pathways (sec1-1, fusion of Golgi-derived exocytic vesicles with the plasma membrane; bos1-1, vesicle targeting to the Golgi complex) or MVB functionality (vps23, late endosomal trafficking) revealed a complex and interrelated protein collection. Semi-quantitative analysis of protein abundance revealed that mutations in both MVB- and Golgi-derived pathways affected the composition of yeast extracellular vesicles, but none abrogated vesicle production. Lipid analysis revealed that mutants with defects in Golgi-related components of the secretory pathway had slower vesicle release kinetics, as inferred from intracellular accumulation of sterols and reduced detection of these lipids in vesicle fractions in comparison with WT cells. Conclusions/Significance: Our results suggest that both conventional and unconventional pathways of secretion are required for biogenesis of extracellular vesicles, which demonstrate the complexity of this process in the biology of yeast cells.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: Although meta-analyses have shown that placebo responses are large in Major Depressive Disorder (MDD) trials; the placebo response of devices such as repetitive transcranial magnetic stimulation (rTMS) has not been systematically assessed. We proposed to assess placebo responses in two categories of MDD trials: pharmacological (antidepressant drugs) and non-pharmacological (device-rTMS) trials. Methodology/Principal Findings: We performed a systematic review and meta-analysis of the literature from April 2002 to April 2008, searching MEDLINE, Cochrane, Scielo and CRISP electronic databases and reference lists from retrieved studies and conference abstracts. We used the keywords placebo and depression and escitalopram for pharmacological studies; and transcranial magnetic stimulation and depression and sham for non-pharmacological studies. All randomized, double-blinded, placebo-controlled, parallel articles on major depressive disorder were included. Forty-one studies met our inclusion criteria-29 in the rTMS arm and 12 in the escitalopram arm. We extracted the mean and standard values of depression scores in the placebo group of each study. Then, we calculated the pooled effect size for escitalopram and rTMS arm separately, using Cohen's d as the measure of effect size. We found that placebo response are large for both escitalopram (Cohen's d-random-effects model-1.48; 95% C.I. 1.26 to 1.6) and rTMS studies (0.82; 95% C.I. 0.63 to 1). Exploratory analyses show that sham response is associated with refractoriness and with the use of rTMS as an add-on therapy, but not with age, gender and sham method utilized. Conclusions/Significance: We confirmed that placebo response in MDD is large regardless of the intervention and is associated with depression refractoriness and treatment combination (add-on rTMS studies). The magnitude of the placebo response seems to be related with study population and study design rather than the intervention itself.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study describes the use of methylene blue (MB) plus light (photodynamic inactivation, PDI) in the presence of hydrogen peroxide (H(2)O(2)) to kill Staphylococcus aureus, Escherichia coli, and Candida albicans. When H(2)O(2) was added to MB plus light there was an increased antimicrobial effect, which could be due to a change in the type of ROS generated or increased microbial uptake of MB. To clarify the mechanism, the production of ROS was investigated in the presence and absence of H(2)O(2). It was observed that ROS production was almost inhibited by the presence of H(2)O(2) when cells were not present. In addition, experiments using different sequence combinations of MB and H(2)O(2) were performed and MB optical properties inside the cell were analyzed. Spectroscopy experiments suggested that the amount of MB was higher inside the cells when H(2)O(2) was used before or simultaneously with PDI, and ROS formation inside C. albicans cells confirmed that ROS production is higher in the presence of H(2)O(2). Moreover enzymatic reduction of MB by E. coli during photosensitizer uptake to the photochemically inactive leucoMB could be reversed by the oxidative effects of hydrogen peroxide, increasing ROS formation inside the microorganism. Therefore, the combination of a photosensitizer such as MB and H(2)O(2) is an interesting approach to improve PDI efficiency.