996 resultados para Resazurin reduction toxicity
Resumo:
The reduction of portfolio risk is important to all investors but is particularly important to real estate investors as most property portfolios are generally small. As a consequence, portfolios are vulnerable to a significant risk of under-performing the market, or a target rate of return and so investors may be exposing themselves to greater risk than necessary. Given the potentially higher risk of underperformance from owning only a few properties, we follow the approach of Vassal (2001) and examine the benefits of holding more properties in a real estate portfolio. Using Monte Carlo simulation and the returns from 1,728 properties in the IPD database, held over the 10-year period from 1995 to 2004, the results show that increases in portfolio size offers the possibility of a more stable and less volatile return pattern over time, i.e. down-side risk is diminished with increasing portfolio size. Nonetheless, increasing portfolio size has the disadvantage of restricting the probability of out-performing the benchmark index by a significant amount. In other words, although increasing portfolio size reduces the down-side risk in a portfolio, it also decreases its up-side potential. Be that as it may, the results provide further evidence that portfolios with large numbers of properties are always preferable to portfolios of a smaller size.
Resumo:
The applicability of AI methods to the Chagas' disease diagnosis is carried out by the use of Kohonen's self-organizing feature maps. Electrodiagnosis indicators calculated from ECG records are used as features in input vectors to train the network. Cross-validation results are used to modify the maps, providing an outstanding improvement to the interpretation of the resulting output. As a result, the map might be used to reduce the need for invasive explorations in chronic Chagas' disease.
Resumo:
Using a free-air CO2 enrichment (FACE) experiment, poplar trees (Populus · euramericana clone I214) were exposed to either ambient or elevated [CO2] from planting, for a 5-year period during canopy development, closure, coppice and re-growth. In each year, measurements were taken of stomatal density (SD, number mm2) and stomatal index (SI, the proportion of epidermal cells forming stomata). In year 5, measurements were also taken of leaf stomatal conductance (gs, lmol m2 s1), photosynthetic CO2 fixation (A, mmol m2 s1), instantaneous water-use efficiency (A/E) and the ratio of intercellular to atmospheric CO2 (Ci:Ca). Elevated [CO2] caused reductions in SI in the first year, and in SD in the first 2 years, when the canopy was largely open. In following years, when the canopy had closed, elevated [CO2] had no detectable effects on stomatal numbers or index. In contrast, even after 5 years of exposure to elevated [CO2], gs was reduced, A/E was stimulated, and Ci:Ca was reduced relative to ambient [CO2]. These outcomes from the long-term realistic field conditions of this forest FACE experiment suggest that stomatal numbers (SD and SI) had no role in determining the improved instantaneous leaf-level efficiency of water use under elevated [CO2]. We propose that altered cuticular development during canopy closure may partially explain the changing response of stomata to elevated [CO2], although the mechanism for this remains obscure.
Resumo:
Diabetes like many diseases and biological processes is not mono-causal. On the one hand multifactorial studies with complex experimental design are required for its comprehensive analysis. On the other hand, the data from these studies often include a substantial amount of redundancy such as proteins that are typically represented by a multitude of peptides. Coping simultaneously with both complexities (experimental and technological) makes data analysis a challenge for Bioinformatics.
Resumo:
It has been suggested that sources of P could be used to remediate metal-contaminated soil. The toxicity of four potential P sources, potassium hydrogen phosphate (PHP), triple superphosphate (TSP), rock phosphate (RP) and raw bone meal (RBM) to Eisenia fetida was determined. The concentration of P that is statistically likely to kill 50% of the population (LC50) for PHP, TSP and RBM was determined in OECD acute toxicity tests. 14 day LC50s expressed as bulk P concentration lay in the range 3319–4272 mg kg−1 for PHP, 3107–3590 mg kg−1 for TSP and 1782–2196 mg kg−1 for RBM (ranges present the 95% confidence intervals). For PHP and TSP mortality was significantly impacted by the electrical conductivity of the treated soils. No consistent relationship existed between mortality and electrical conductivity, soil pH and available (Olsen) P across the PHP, TSP and RBM amendment types. In RP toxicity tests mortality was low and it was not possible to determine a LC50 value. Incineration of bone meal at temperatures between 200 and 300 ◦C, pre-washing the bone meal, co-amendment with 5% green waste compost and delaying introduction of earthworms after bone meal amendments by 21 days or more led to significant reductions in the bone meal toxicity. These results are consistent with the toxicity being associated with the release and/or degradation of a soluble organic component present in raw bone meal. Bone meal can be used as an earthworm-friendly remedial amendment in metal-contaminated soils but initial additions may have a negative effect on any earthworms surviving in the contaminated soil before the organic component in the bone meal degrades in the soil.
Resumo:
The problem of state estimation occurs in many applications of fluid flow. For example, to produce a reliable weather forecast it is essential to find the best possible estimate of the true state of the atmosphere. To find this best estimate a nonlinear least squares problem has to be solved subject to dynamical system constraints. Usually this is solved iteratively by an approximate Gauss–Newton method where the underlying discrete linear system is in general unstable. In this paper we propose a new method for deriving low order approximations to the problem based on a recently developed model reduction method for unstable systems. To illustrate the theoretical results, numerical experiments are performed using a two-dimensional Eady model – a simple model of baroclinic instability, which is the dominant mechanism for the growth of storms at mid-latitudes. It is a suitable test model to show the benefit that may be obtained by using model reduction techniques to approximate unstable systems within the state estimation problem.
Resumo:
Phthalates are industrial additives widely used as plasticizers. In addition to deleterious effects on male genital development, population studies have documented correlations between phthalates exposure and impacts on reproductive tract development and on the metabolic syndrome in male adults. In this work we investigated potential mechanisms underlying the impact of DEHP on adult mouse liver in vivo. A parallel analysis of hepatic transcript and metabolic profiles from adult mice exposed to varying DEHP doses was performed. Hepatic genes modulated by DEHP are predominantly PPARalpha targets. However, the induction of prototypic cytochrome P450 genes strongly supports the activation of additional NR pathways, including Constitutive Androstane Receptor (CAR). Integration of transcriptomic and metabonomic profiles revealed a correlation between the impacts of DEHP on genes and metabolites related to heme synthesis and to the Rev-erbalpha pathway that senses endogenous heme level. We further confirmed the combined impact of DEHP on the hepatic expression of Alas1, a critical enzyme in heme synthesis and on the expression of Rev-erbalpha target genes involved in the cellular clock and in energy metabolism. This work shows that DEHP interferes with hepatic CAR and Rev-erbalpha pathways which are both involved in the control of metabolism. The identification of these new hepatic pathways targeted by DEHP could contribute to metabolic and endocrine disruption associated with phthalate exposure. Gene expression profiles performed on microdissected testis territories displayed a differential responsiveness to DEHP. Altogether, this suggests that impacts of DEHP on adult organs, including testis, could be documented and deserve further investigations.
Resumo:
Three bruchid pest species, Callosobruchus maculatus, Callosobruchus chinensis and Callosobruchus rhodesianus, were studied for their response to insecticide toxicity taking into account the separate and interactive effects of temperature and pre-adult food. The food types used were cowpea (Vigna unguiculata) and mungbean (Vigna radiata). Callosobruchus maculatus was the most tolerant to malathion and the least affected by temperature change while C. rhodesianus was the least tolerant. Over a 4 C range (23, 25, 27 C), there was generally a significant impact of temperature on the tolerance of the three species to the insecticide. The food type on which the insects developed influenced considerably the degree of insecticide tolerance. Callosobruchus maculatus and C. chinensis populations reared onmungbean had higher tolerance to malathion than their counterparts reared on cowpea, but the opposite was observed in C. rhodesianus populations. The food influence in this study suggested an ancestral cause or fitness cost depending on the species. The interaction of food-by-temperature had no significant effect on malathion toxicity to this genus. Correlation analysis showed C. chinensis to be relatively less sensitive to insecticide concentration over the range studied compared with the other two species.
Resumo:
Hippocampal CA1 pyramidal neurons are highly sensitive to ischemic damage, whereas neighboring CA3 pyramidal neurons are less susceptible. It is proposed that switching of AMPA receptor (AMPAR) subunits on CA1 neurons during an in vitro model of ischemia, oxygen/glucose deprivation (OGD), leads to an enhanced permeability of AMPARs to Ca2+, resulting in delayed cell death. However, it is unclear whether the same mechanisms exist in CA3 neurons and whether this underlies the differential sensitivity to ischemia. Here, we investigated the consequences of OGD for AMPAR function in CA3 neurons using electrophysiological recordings in rat hippocampal slices. Following a 15 min OGD protocol, a substantial depression of AMPAR-mediated synaptic transmission was observed at CA3 associational/commissural and mossy fiber synapses but not CA1 Schaffer collateral synapses. The depression of synaptic transmission following OGD was prevented by metabotropic glutamate receptor 1 (mGluR1) or A3 receptor antagonists, indicating a role for both glutamate and adenosine release. Inhibition of PLC, PKC, or chelation of intracellular Ca2+ also prevented the depression of synaptic transmission. Inclusion of peptides to interrupt the interaction between GluA2 and PICK1 or dynamin and amphiphysin prevented the depression of transmission, suggesting a dynamin and PICK1-dependent internalization of AMPARs after OGD. We also show that a reduction in surface and total AMPAR protein levels after OGD was prevented by mGluR1 or A3 receptor antagonists, indicating that AMPARs are degraded following internalization. Thus, we describe a novel mechanism for the removal of AMPARs in CA3 pyramidal neurons following OGD that has the potential to reduce excitotoxicity and promote neuroprotection
Resumo:
A carbon reduction strategy for a historic Grade 1 listed office building in London is presented. The study evaluates the impact of49 different carbon abatement options, quantified using building simulation software, auditing procedures and qualitative methods. The impact of each option is assessed against three criteria: carbon abatement potential, practicality and cost. The strategy comprises of18interventions,integrated within 12 key recommendations. Accumulative reduction of 37% (below a 2009 carbon emissions baseline)appears achievable and only feasible with heavy reliance on changes in occupant behaviour. This theme appears central in achieving realistic and significant carbon savings from listed buildings, where planning constraints relinquish potential for major building fabric alteration and renewable energy installations.
Resumo:
Interference by siren background-noise with speech transmitted from radio equipment (3) of an emergency-service vehicle, is reduced by apparatus (1) that subtracts (43) an estimate nk of the correlated siren-noise component from the contaminated signal yk supplied by the cab-microphone (2). The estimate nk is computed by FIR (finite impulse response) filtering of a siren-reference signal xk supplied by a unit (4) from one or more microphones located on or near the siren, or from the electric waveform driving the siren. The filter-coefficients wk are adjusted according to an LMS (least mean square) adaptive algorithm that is applied to the correlated-noise component ek of the fed-back noise-reduced signal, so as to bring about iterative cancellation with close frequency-tracking, of the siren noise.
Resumo:
In terrestrial television transmission multiple paths of various lengths can occur between the transmitter and the receiver. Such paths occur because of reflections from objects outside the direct transmission path. The multipath signals arriving at the receiver are all detected along with the intended signal causing time displaced replicas called 'ghosts' to appear on the television picture. With an increasing number of people living within built up areas, ghosting is becoming commonplace and therefore deghosting is becoming increasingly important. This thesis uses a deterministic time domain approach to deghosting, resulting in a simple solution to the problem of removing ghosts. A new video detector is presented which reduces the synchronous detector local oscillator phase error, caused by any practical size of ghost, to a lower level than has ever previously been achieved. From the new detector, dispersion of the video signal is minimised and a known closed-form time domain description of the individual ghost components within the detected video is subsequently obtained. Developed from mathematical descriptions of the detected video, a new specific deghoster filter structure is presented which is capable of removing both inphase (I) and also the phase quadrature (Q) induced ghost signals derived from the VSB operation. The new deghoster filter requires much less hardware than any previous deghoster which is capable of removing both I and Q ghost components. A new channel identification algorithm was also required and written which is based upon simple correlation techniques to find the delay and complex amplitude characteristics of individual ghosts. The result of the channel identification is then passed to the new I and Q deghoster filter for ghost cancellation. Generated from the research work performed for this thesis, five papers have been published. D